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Abstract In this chapter we analyze the existence and forms of invariants of the

extended Korteweg-de Vries equation (KdV2). This equation appears when the Euler

equations for shallow water are extended to the second order, beyond Korteweg-de

Vries (KdV). We show that contrary to KdV for which there is an infinite number of

invariants, for KdV2 there exists only one, connected to mass (volume) conservation

of the fluid. For KdV2 we found only so-called adiabatic invariants, that is, functions

of the solutions which are constants neglecting terms of higher order than the order

of the equation. In this chapter we present two methods for construction of such

invariants. The first method, a direct one, consists in using constructions of higher

KdV invariants and eliminating non-integrable terms in an approximate way. The

second method introduces a near-identity transformation (NIT) which transforms

KdV2 into equation (asymptotically equivalent) which is integrable. For the equation

obtained by NIT, exact invariants exist, but they become approximate (adiabatic)

when the inverse NIT transformation is applied and original variables are restored.

Numerical tests of the exactness of adiabatic invariants for KdV2 in several cases

of initial conditions are presented. These tests confirm that relative changes in these

approximate invariants are small indeed. The relations of KdV invariants and KdV2

adiabatic invariants to conservation laws are discussed, as well.
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1 Introduction

The celebrated Korteweg-de Vries equation (KdV) [31], whose origin is the set of

Euler’s shallow water and long wavelength equations, now enjoys a paradigmatic

status in the field of nonlinear partial differential equations. There is a huge number

of research papers concerned with weakly nonlinear, dispersive and long wavelength

problems in which KdV is shown as the lowest approximation of wave motion in a

number of fields of physics, see, e.g., monographs [8, 22, 36, 39, 41] and references

therein.

It is accepted fact that KdV gives an infinite number of invariants or conservation

laws also referred to as integrals of motion [4, 8, 35, 37]. The two first KdV invariants

concern the preservation of mass (volume) of the fluid and conservation of its total

momentum. The next one is related to energy conservation. The higher KdV invari-

ants have no simple interpretation. KdV is, however, the result of an approximation

of the set of the Euler equations within the perturbation approach, limited to the first

order in expansion with respect to parameters assumed to be small. KdV has been

extended to the second order (KdV2) by a number of authors, e.g., [6, 21, 25, 33, 34,

42]. In [23, 24, 26, 28] the authors have derived the KdV2 equation for an uneven

bottom, introducing an additional small parameter related to bottom variation. Here

the term second order is defined as the order of perturbation expansion with respect

to small parameters. However, this advanced form is lacking in exactly conserved

quantities except for the ubiquitous mass law.

Many papers, e.g., [4, 7, 9–11, 13, 16–19, 29, 30, 44] assert integrability of

second order KdV type equations and existence of higher invariants. Specifically

Benjamin and Olver [4] have discussed Hamiltonian structure, symmetries and con-

servation laws in respect of water waves. A near-identity transformation (NIT), first

published by Kodama [29, 30] and since used by many other authors, e.g., [7, 9–11,

13, 16–19, 44], makes it possible to transform the second order KdV type equa-

tions into Hamiltonian forms which are asymptotically equivalent. The existence of

the Hamiltonian form for the transformed equation supplies the full hierarchy of

invariants, which appear to be adiabatic invariants in respect of the original equation.

The lack of exact invariants in the system forces one to look for adiabatic (approx-

imate) ones, as in [5]. Recently we developed a simple method to calculate such

adiabatic invariants, allowing us to derive them directly using the original ‘physical’

equation (equally applicable to equations expressed in dimensional variables) [21].

Our method is as follows: one constructs the KdV2 in a similar fashion as one does

for KdV invariants and then applies the addition of KdV, multiplied by a small param-

eter, to cancel the non-integrable terms. In [21] we focused on this direct method

mentioning NIT-based derivation of adiabatic invariants rather briefly. In this chapter

the NIT method is discussed more broadly with particular attention paid to energy

conservation law.

It is shown in [40] that KdV2 for uneven bottom [23, 26] is not symmetry-

integrable since it admits no genuinely generalized symmetries.
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The chapter substantially extends results published recently in [25]. In order to

introduce the reader to higher order nonlinear equations beyond KdV several earlier

achievements [23, 24, 26, 28] are recalled in Sect. 2. The set of Euler’s equations

for the inviscid and incompressible fluid and irrotational motion is introduced and

the perturbation technique leading to KdV and KdV2 equations is described. Then

analytic solutions for KdV and the recently obtained ones for KdV2, solitonic [23]

and periodic [21], are presented and their properties compared.

In Sect. 3 we recall derivations of lowest invariants of KdV and their relations to

conservation laws. In Sect. 4 a direct extension of the methods used in Sect. 3 for the

KdV2 equation is presented. Particular forms of second and third adiabatic invariants

for KdV2 are obtained.

In Sect. 5 near-identity transformation is introduced and applied to find general

forms of lowest adiabatic invariants for KdV2. Relations of adiabatic invariants of

KdV2 to formulas for the momentum and energy of the system are discussed, as

well. The quality of adiabatic invariants is tested in numerics in Sect. 6. The main

results are summarised in Sect. 7.

2 KdV and KdV2 Equations

First, we will recall briefly the derivation of KdV and KdV2 equations.

The natural assumptions in the shallow water wave problem are the following.

Since water viscosity and compressibility are very small the fluid is assumed to be

inviscid and incompressible. For gravity waves velocities of fluid particles are small,

as well, therefore the motion can be considered as irrotational. This property allows

us to introduce velocity potential φ. The velocity potential fulfils the Laplace equation

for entire fluid volume. The set of Euler’s equations contains also the kinematic and

dynamic boundary conditions at the free surface and the kinematic boundary condi-

tion at the impenetrable bottom. The full set of equations for the velocity potential

φ(x, y, z, t), as well as its derivation, is published in many textbooks, for instance,

see [39, Chap. 5]. A typical procedure consists in introducing two small parameters

α = a/h and β = (h/l)2 and in application of perturbation approach with respect to

these parameters. Here a is the amplitude of a surface wave η, h is water depth and

l is a typical surface waves wavelength.

An approximation in deriving KdV and higher order nonlinear wave equations is

correct when two small parameters α and β are of the same order of magnitude. The

definitions of small parameters α and β and the geometry of the problem are shown

in Fig. 1. The parameters α,β have the same meaning as the parameters ε, δ2 in [39],

respectively. These notations follow those in the paper [6], in which a systematic

method for the derivation of wave equations of different orders is given. In [23, 26]

we have introduced a third parameter δ = ah/h, where ah denotes the amplitude of

bottom changes. This new parameter allowed us to derive second order equation for

surface waves over a non-flat bottom using the same perturbative approach as for

derivation of KdV or higher-order KdV-like equations.
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h

a
η(x,t)

α=a/h
β=(h/l)2

bottom
undisturbed surface

η(x,t)

Fig. 1 Schematic view of the geometry of the problem

In what follows we restrict discussion to the 2-dimensional flow, φ(x, z, t) (which

means translational symmetry with respect to y axis). Here, the horizontal coordinate

is denoted by x and the vertical one is denoted by z.

A convenient way of studying the problem is introducing non-dimensional vari-

ables. They are defined as follows

η̃ = η/a, φ̃ = φ/(l
a

h

�
gh),

x̃ = x/l, z̃ = z/h, t̃ = t/(l/
�

gh). (1)

The set of hydrodynamic equations for 2-dimensional flow in the non-dimensional

variables takes the simpler form (henceforth all tildes have been omitted)

βφxx + φzz = 0, (2)

ηt + αφxηx − 1

β
φz = 0, for z = 1 + αη (3)

φt + 1

2
αφ2

x + 1

2

α

β
φ2

z + η = 0, for z = 1 + αη (4)

φz = 0, for z = 0. (5)

The Laplace equation (2) is valid for the entire volume of the fluid. The Eq. (3) repre-

sents so called kinematic boundary condition at the (unknown) surface whereas the

Eq. (4) is so called dynamic boundary condition at the surface. The Eq. (5) expresses

the boundary condition at the impenetrable flat bottom. For abbreviation the partial

derivatives with respect to corresponding variables are denoted by subscripts, i.e.

φnx ≡ ∂nφ

∂xn and so on.

Next, the velocity potential is postulated in the form of power series
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φ(x, z, t) =
∞�

m=0

zm φ(m)(x, t). (6)

The Laplace equation (2) permits the expression of all φ(2m) functions by the deriva-

tives φ
(0)
2mx, and all φ(2m+1) functions by the derivatives φ

(1)
2mx. Since the boundary

condition at the bottom (5) sets φ(1) = 0, all φ(2m+1) vanish and one obtains the

following velocity potential

φ = φ(0) − 1

2
β z2φ

(0)
2x + 1

24
β2z4φ

(0)
4x + 1

720
β3z6φ

(0)
6x + . . . . (7)

The presence of small parameters α,β in the set of hydrodynamic equations (2)–

(5) and (7) allows us to apply the perturbation technique and to derive equations in first

and second order with respect to these parameters. Next we insert φ(x, z, t) given by

(7) into (3) and (4) retaining only terms up to second order in small parameters α,β.

The Eq. (4) is then differentiated with respect to x and finally w(x, t) is substituted

in place of φ(0)
x (x, t) in both equations. By this procedure one obtains a set of two

coupled nonlinear differential equations which, in general, can be studied at different

orders of approximation. This is a second order Boussinesq system

ηt + wx + α(ηw)x − 1

6
βw3x − 1

2
αβ(ηw2x)x + 1

120
β2w5x = 0, (8)

wt +ηx+αwwx− 1

2
βw2xt + 1

24
β2w4xt + 1

2
αβ[−2(ηwxt)x+wxw2x−ww3x]= 0. (9)

Burde and Sergyeyev [6] show a way of eliminating sequentially the w(x, t)
variable and deriving a single equation for η(x, t) using the higher order perturbative

approach. In their method the properties of solutions to lower order equations for w
and η are used in derivations of corrections to equations in the next order. In theory

this method can be used up to an arbitrary order. For the reader’s convenience we

will present it briefly below.

2.1 KdV Equation

Limitation of the Boussinesq system (8), (9) to first order in α,β

ηt + wx + α(ηw)x − 1

6
βw3x = 0, (10)

wt + ηx + αwwx − 1

2
βw2xt = 0 (11)

results in the derivation of a KdV equation. First, notice that in zeroth order the above

equations
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ηt + wx = 0, wt + ηx = 0 (12)

hold when η = w and ηx = wx. It follows that ηt = −ηx and wt = −wx.

Next, one seeks solutions of the first order set (10), (11) requiring that w, η fulfil

(12) and introducing first order corrections C(α), C(β)

w = η + αC(α) + βC(β). (13)

Insertion of (13) into (10), (11) and neglection of higher order terms gives

α
�
C(α)

x + 2ηηx
� + β

�
C(β)

x − 1

6
η3x

�
= 0 (14)

α
�

C(α)
t + ηηx

�
+ β

�
C(β)

t − 1

2
η2xt

�
= 0. (15)

Because of the correction functions appearing already in first order, it is enough to

use a zeroth order formula relating their space and time derivatives. Therefore we use

C(α)
t = −C(α)

x , C(β)
t = −C(β)

x (like ηt = −ηx, wt = −wx) in (14), (15). (Otherwise, if

one takes, for instance, C(α)
t = −C(α)

x + αC1 + βC2, then terms with C1, C2 appear

in second order and consequently are neglected). Inserting these relations, subtracting

(14) form (15) and equating separately to zero terms with coefficients α and β one

obtains

C(α)
x = −1

2
ηηx and C(β)

x = 1

3
η3x. (16)

Integration gives

C(α) = −1

4
η2 and C(β)

x = 1

3
η2x. (17)

Then Eqs. (11) and (10) take the final form

w = η − 1

4
αη2 + 1

3
βη3x, (18)

ηt + ηx + 3

2
αηηx + 1

6
βη3x = 0. (19)

Equation (19) is the famous Korteweg-de Vries (KdV) equation in fixed reference

frame (and scaled dimensionless variables). There are several forms of KdV equation

in the literature. Transformation x̄ = x − t, t̄ = t converts (19) into

ηt̄ + 3

2
αηηx̄ + 1

6
βη3x̄ = 0. (20)

Additional scaling by x̃ =
�

3
2
x̄, t̃ = 1

4

�
3
2
αt̄ transforms (20) into
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ηt̃ + 6ηηx̃ + β

α
η3x̃ = 0 or ηt̃ + 6ηηx̃ + η3x̃ = 0, when β = α. (21)

Equation (20) gives the form of KdV in the reference frame moving with a character-

istic velocity (equal to 1 in dimensionless variables, which corresponds to
√

gH in

original variables). Forms like (21) or similar are preferred in mathematical papers.

Sometimes the inverse transform to dimensional variables is applied yielding

ηt + cηx + 3

2

c

H
ηηx + cH 2

6
η3x = 0, (22)

where c = √
gH is the limiting long wave speed [3]. Then, solutions of (22) can be

directly compared to experimental data.

2.2 Extended KdV (KdV2)

Extending considerations of the Boussinesq equations (8), (9) to second order we

make use of first order solutions (18) and (19). So, applying the perturbation technique

described by [6], we postulate w in the form (18) plus higher order corrections, that

is

w = η − 1

4
αη2 + 1

3
βη3x + α2C(α2) + αβC(αβ) + β2C(β2), (23)

where C(α2), C(αβ), C(β2) are yet unknown functions of η and its derivatives. Proceed-

ing similarly as in first order equations and using the same properties of relations for

time and space derivatives of correction functions, that is, C(·)
t = −C(·)

x one obtains

them in the form

C(α2) = 1

8
η3, C(αβ) = 3

16
η2

x + 1

2
ηη2x, C(β2) = 1

10
η4x. (24)

Then the final form of second order equations is

w = η − 1

4
αη2 + 1

3
βη3x + 1

8
α2η3 + αβ

�
3

16
η2

x + 1

2
ηη2x

�
+ 1

10
β2η4x, (25)

ηt + ηx + 3

2
αηηx + 1

6
βη3x − 3

8
α2αβ

�
23

24
ηxη2x + 5

12
ηη3x

�
+ 19

360
β2η5x = 0. (26)

Equation (26) was derived by Marchant and Smyth [33] (directly from the set of

Euler equations and alternatively from Luke’s Lagrangian [32]) and called by the

authors the extended KdV. This is a second order extension of KdV in dimensionless

variables and fixed reference frame. We call it in short KdV2. In principle KdV2

solutions should be a better approximation of the solutions to the Boussinesq set than
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KdV solutions. They should be, as well, reasonable approximations in a wider range

of small parameters α, β.

2.3 Analytic Solutions of KdV and KdV2

KdV gained enormous success as an approximation common for many problems

in nonlinear physics. KdV is integrable and has solutions exhibiting a rich variety

of properties. The standard derivation of analytic solutions in the form of single

solitonic functions (in terms of hyperbolic functions) and periodic functions (Jacobi

elliptic functions) is presented in many textbooks or monographs, see, e.g., [1, 8,

20, 36, 39, 41]. It consists in the introduction of the new variable ξ = x − vt. Then

KdV is transformed to a nonlinear ordinary differential equation (ODE) which can

be integrated two times leading to the equation

β

3α

�
ηξ

�2 = −η3 + 2c1η
2 + rη + s, (27)

where c1 = v−1
α

, r and s are integration constants. The particular case r = s = 0

leads to the soliton solution

η(x, t) = A Sech2

��
3A

4

α

β

�
x − t

�
1 + α

2

���
. (28)

When one is interested only in mathematical properties of KdV solutions A can be an

arbitrary positive constant. However, if physical properties are considered A should

be close to one, otherwise the resulting solution contradicts the basic assumption for

the derivation ( A
H = α � 1).

When integration constants are nonzero a thorough analysis shows the existence

of periodic solutions in terms of Jacobi elliptic functions cn2 (or equivalently dn2).

The solutions have the form (cnoidal wave)

η(x, t) = A cn2 [B (x − vt) , m] + D, (29)

where A, B, D, v are constants and m ∈ [0, 1] is the elliptic parameter. Constant

D < 0 is necessary in order to ensure that the volumes of water elevations and

depressions with respect to the undisturbed water level are the same (volume conser-

vation condition). When the elliptic parameter m → 1 the distance between crests of

cnoidal wave increases to infinity resulting in a soliton solution as the limit. When

m → 1 the limiting profile is the usual cosine wave.

KdV possesses one more important property. There exist exact n-soliton solutions

which can be derived from the inverse scattering theory, see, e.g., [1, 2, 12, 14, 38].
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Not much was known about analytic solutions to KdV2 till recently. In [23] we

showed that KdV2 has an exact single soliton solution of the same form as KdV (28)

but with different coefficients. The derivation is following. Proceeding similarly as

in the KdV case, that is, introducing ξ = x − vt one transforms (26) into ODE.

Postulating the solution in the form η(ξ) = A Sech2(B ξ) results in an equation of

the form

C2 Sech2(B ξ) + C4 Sech4(B ξ) + C6 Sech6(B ξ) = 0, (30)

where C2, C4, C6 are functions of unknowns A, B, v and coefficients of the KdV2

equation. Equation (30) holds when all Ci vanish simultaneously. Then, solving the

set C2 = 0, C4 = 0 and C6 = 0 one obtains formulas for the coefficients A, B, v
which determine the solution. Condition C6 = 0 implies a quadratic equation for

z = B2β

A α
with solutions

z1 = 43 − √
2305

152
≈ −0.033, z2 = 43 + √

2305

152
≈ 0.599. (31)

Then the final formulas are

A = z− 3
4

α z( 11
4 − 19

3 z)
, B =

���� z− 3
4

β( 11
4 − 19

3 z)
, v = 1+ z− 3

4

( 11
4 − 19

3 z)

�
2

3
+ 38

45

z− 3
4

( 11
4 − 19

3 z)

�
. (32)

Solutions obtained with z = z1 have to be rejected. In this case B is imaginary,

B = iB̄. Then Sech2[B(x − vt)] = �
cos2[B̄(x − vt)]�−1

. The solution has poles for

some arguments, so it has no physical sense.

There is an important difference between solitonic solutions to KdV2 and KdV.

There is no freedom for the former ones, and for a given α,β three equations Ci = 0

completely determine the coefficients A, B, v of the solutions. For derivation of KdV

coefficients the equation analogous to (30) contains only two lower order terms. Then

there are only two equations for three coefficients A, B, v. This means that there is

one parameter family of solutions. Usually B, v are expressed as functions of positive

A which can be arbitrary within some interval (as long as it does not contradict the

basic assumption A
h � 1). Moreover, for KdV2 solitons the ratio B2

A = α
β

z ≈ 0.6 α
β

and v ≈ 1.1145 whereas for KdV B2

A = 0.75 α
β

and v = 1 + α
2

.

The exact periodic solutions of KdV2 obtained by us in [21] are very fresh.

Encouraged by the success of the method used in [23] to derive the soliton solution

to KdV2 we postulated periodic solutions to KdV2 in the same form as periodic

solutions to KdV (29). Then with a similar procedure as that described above for the

solitonic case one arrives at an equation analogous to (30)

F0 + F2 cn2(B ξ) + F4 cn4(B ξ) = 0, (33)
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where Fi = Fi(A, B, D, v). Then the set of equations Fi = 0 supplemented by the

volume conservation condition allows us to determine all four unknown coefficients

A, B, D, v of the solution as functions of the elliptic parameter m. The condition

F4 = 0 gives the same quadratic equation for z	 = B2β

A α
1
m as the equation C6 = 0 for

the solitonic case. Therefore roots z	
1, z	

2 are the same as z1, z2 in (31).

The periodicity of cn function ensures λ/2 = 2K(m)/B, where λ is the wave-

length and K(m) is the complete elliptic integral of the first kind. Then the volume

conservation condition � λ/2

0

[A cn2(Bξ, m)]dξ = 0 (34)

yields relations between A, D and m

D = − A

m

�
E(m)

K(m)
+ m − 1

�
, (35)

where E(m) is the complete elliptic integral. In explicit formulas for coefficients

A, B2, D the factor EK(m) = 3 E(m)

K(m)
+ m − 2 appears. The function EK(m), m ∈

[0, 1] has the root ms ≈ 0.96115 and is positive when m < ms and negative when

m > ms. Then because two z	 roots have different signs there are two branches of

KdV2 solutions.

1. The branch with z	 = z2. B2 > 0 and then the real B is obtained only when

EK(m) < 0, that is when m > ms. Therefore A > 0, D < 0, and the solution is

a ‘normal’ cnoidal wave with amplitude of crests larger than depressions.

2. Branch with z	 = z1. B is real-valued when m < ms. This implies A < 0, D > 0,

and the solution is an inverted cnoidal profile. Such solutions do not exist for

KdV.

For both branches there exist such intervals of m that B2 < 0. However, these solu-

tions (after transforming them to functions of real arguments) exhibit singularities

for some arguments and therefore have no physical sense.

For detailed derivation of the analytic periodic solutions of KdV2 and discussion

of their properties, see [21].

3 KdV Invariants

It is widely known, see, e.g., [8, Chap. 5], that an equation with a form analogous to

the form of the continuity equation

∂T

∂t
+ ∂X

∂x
= 0, (36)
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corresponds to some conservation law. In (36) T and X are analogs to density and

flux, respectively. Functions T and X may depend on x, t, η, ηx, η2x, . . . , but not

on ηt . The Eq. (36) can be applied, in particular, to KdV and to the equations of

the KdV type, such as (47). If functions T and Xx are integrable on x ∈ (−∞,∞)

and lim
x→±∞ X = const (this case corresponds to soliton solutions), then integration of

Eq. (36) gives
d

dt

�� ∞

−∞
T dx

�
= 0 or

� ∞

−∞
T dx = const. (37)

since

� ∞

−∞
Xx dx = X (∞, t) − X (−∞, t) = 0. (38)

The same conclusion can be drawn for periodic solutions (cnoidal waves). In this

case limits in the integrals (37), (38) have to be replaced by (a, a + Λ), where Λ is

the wave length of the cnoidal wave and a is arbitrary.

For the KdV equation (20) the first two invariants are easily obtainable. When

(20) is presented in the form

∂η

∂t
+ ∂

∂x

�
η + 3

4
αη2 + 1

6
βηxx

�
= 0, (39)

the conservation of mass (volume) law is immediately obtained

I (1) =
� ∞

−∞
η dx = const. (40)

Multiplication of (20) by η leads to

∂

∂t

�
1

2
η2

�
+ ∂

∂x

�
1

2
η2 + 1

2
αη3 − 1

12
βη2

x + 1

6
βηηxx

�
= 0, (41)

which results in the following form of the second invariant

I (2) =
� ∞

−∞
η2 dx = const. (42)

Invariants I (1) (40) and I (2) (42) have the same form both in fixed and moving

reference frames.

Denoting by KDV(x, t) the left hand side of (20) and taking

3η2 × KDV(x, t) − 2

3

β

α
ηx × ∂

∂x
KDV(x, t) = 0 (43)

one obtains
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∂

∂t

�
η3 − 1

3

β

α
η2

x

�
+ (44)

∂

∂x

�
9

8
αη4 + 1

2
βη2xη

2 − βη2
xη + η3 + 1

18

β2

α
η 2

2x − 1

9

β2

α
ηxη3x − 1

3

β

α
η2

x

�
= 0.

This gives the third invariant for KdV (20) in the fixed reference frame

I (3) =
� ∞

−∞

�
η3 − 1

3

β

α
η2

x

�
dx = const. (45)

The same formula is obtained for the third KdV invariant in the moving frame [24].

In the subject literature, see, e.g., [3, 8], I (2) is attributed to conservation of momen-

tum and I (3) to conservation of energy. However, as pointed out in [24] they are not

exact momentum and energy, respectively.

For any solutions of KdV preserving their shapes during the motion, that is, for

single soliton solutions and cnoidal solutions, integrals of any power of the solution

η(x, t) and any power of its arbitrary derivative with respect to x are invariants. That

is,

I (p,k) =
� ∞

−∞
(ηkx)

pdx = const, (46)

where p ∈ R is an arbitrary real number, and k = 0, 1, 2, . . . . An arbitrary linear

combination of I (p,k) is an invariant, as well.

4 KdV2 Adiabatic Invariants—Direct Method

We now consider the KdV2 equation [24, Eq. (1)]

ηt + ηx + 3

2
α ηηx + 1

6
β η3x (47)

− 3

8
α2η2ηx + αβ

�
23

24
ηxη2x + 5

12
ηη3x

�
+ 19

360
β2η5x = 0,

named as the extended KdV by Marchant and Smyth [33, Eq. (2.8)]. They derived

(47) both from Euler’s hydrodynamic equations and Luke’s Lagrangian [32]. The

equation has been considered by several authors, see, e.g., [6, 21, 23–26, 28, 33,

34]. As stated above, we call it KdV2.

In [24], we note that I (1) =
� ∞

−∞
η dx is the exact invariant of (47) representing

the conservation of mass as it does for KdV.
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4.1 Second Invariant

The second invariant of KdV, I (2) =
� ∞

−∞
η2 dx is not an invariant of KdV2, because,

see [24, Sec. III B], after multiplication of Eq. (47) by η one obtains

∂

∂t

�
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2
η2

�
+ ∂
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�
1

2
η2 + 1
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6
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32
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+ 19

360
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xx − ηxη3x + ηη4x

�
+ 5

12
αβ η2η2x

�
+ 1

8
αβ ηηxη2x = 0 .

It is not possible to express the final term in (48) as
∂

∂x
X (η, ηx, . . .). Then contrary to

KdV case the quantity

� +∞

−∞
η2dx is not conserved. There are no exact higher order

invariants of (47) as well.

It is possible, though, to determine approximate invariants of (47), whose terms

which violate the invariance are of the third order in α,β. Our simple method allows

us to determine such approximate invariants without big effort. It works by forming

an equation which contains functions T and X by means of some manipulations with

KdV2. In this equation there are terms in X which are non-integrable with respect

to x similarly as the last term in (48). By adding a linear combination of the form

(c1α + c2β) × KdV 2(x, t) to that equation, dropping the third order terms we can

determine c1 and/or c2 such that the non-integrable terms cancel. (Equivalently, we

add a linear combination of the form (c1α + c2β) × KdV (x, t) without dropping any

term.) This action yields a new T 	 function and an approximate conservation law for� ∞
−∞ T 	dx.

The first approximate invariant can be obtained by adding to (48) Eq. (47) mul-

tiplied by c1αη2, neglecting terms of third-order and selecting a proper value of

c1 in order to cancel the term
1

8
αβ ηηxη2x. When this is done we are left with the

expression

c1αηtη
2 + c1αη2ηx + c1

3

2
α2η3ηx + c1

1

6
αβη2η3x. (49)

In integration over x of (49), terms c1αη2ηx and c1
1
6
αβη2η3x are integrable with

respect to x and then can be included into the flux function X .

The last term in (49) can be transformed to − 1
3
c1αβηηxη2x. It cancels with

1
8
αβ ηηxη2x when c1 = 3

8
. Then the first term in (49) yields

c1αηtη
2 = ∂

∂t

�
1

8
αη3

�
. (50)
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Due to integrability of the other terms the approximate invariant of KdV2 is obtained

as ( 1
2

is omitted)

I (2α)
ad =

� ∞

−∞

�
η2 + 1

4
α η3

�
dx ≈ const. (51)

However, there is another way to remove the last term in (48) and get an alternative

form of the second approximate invariant. This goal can be achieved by adding to

(48) Eq. (47) multiplied by c2βη2x, dropping again third-order terms and selecting a

proper value of c2 to remove the term
1

8
αβ ηηxη2x. Then new terms are

c2βηtη2x + c2βηxη2x + c2

3

2
αβηηxη2x + c2

1

6
β2η2xη3x. (52)

In integration over x of (52), the terms c2βηxη2x and c2
1
6
β2η2xη3x are integrable

with respect to x and then can be included into X . The cancellation of non-integrable

terms

c2

3

2
αβηηxη2x + 1

8
αβ ηηxη2x = 0

implies c2 = − 1
12

.

Integration of the first term in (52) over x gives� ∞

−∞
c2βηtη2xdx = c2β

�
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�
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Since terms with ηxη2x and η2xη3x can be expressed as
�− 1

2
η2

x

�
x

and
�− 1

2
η 2

2x

�
x
,

respectively, one gets finally

∂
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�
η2 + 1

12
βη 2

x

�
dx + F(η, ηx, η2x)|∞−∞ = O(α3), (54)

where F(η, ηx, η2x) results from the integration of the flux term. Since solutions to

KdV2 are either solitonic or periodic then this term vanishes.

This gives an adiabatic (approximate) invariant of KdV2 (47) in the form

I (2β)

ad =
� ∞

−∞

�
η2 + 1

12
β η 2

x

�
dx ≈ const. (55)

The existence of two independent adiabatic invariants I (2α)
ad and I (2β)

ad means also

that

I (2)
ad = ε I (2α)

ad + (1 − ε)I (2β)

ad =
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�
η2 + ε

1

12
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1

12
β η 2

x

�
dx (56)



Adiabatic Invariants of Second Order Korteweg-de Vries Type Equation 189

is an adiabatic invariant for any ε, that is, there exists one parameter family of

adiabatic second invariant of KdV2.

4.2 Third Invariant

In order to find the third invariant for KdV2 one can follow the procedure described

in Sect. 3, Eqs. (43)–(45), but for KdV2 equation. Take

3η2 × KDV2(x, t) − 2

3

β

α
ηx × ∂

∂x
KDV2(x, t) = 0 (57)

and consider a simpler case, when β = α. The result is
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In (58) we omitted terms which vanish under integration over x. All terms in the

second and third rows of (58) are non-integrable. However, taking an integral of

the form
� ∞
−∞ . . . dx and integrating by parts they can be reduced to two types of

non-integrable terms. All terms in the bracket with α become proportional to ηηxη2x.

All terms in the bracket with α2 reduce to ηηxη2x and ηxη
2

2x. Then using procedures

described above for second adiabatic invariant, that is, by adding to (58) the KdV

multiplied by proper factors one can cancel these non-integrable terms. The added

terms supply additional terms in the T function. As in the case of second invariant

this action is not unique and there is some freedom in the form of final adiabatic

invariant. One of admissible forms is

I (3)
ad =

� ∞

−∞

�
η3 − 1

3
η2

x − αη4 + 7

12
α ηη2

x

�
dx. (59)

It should be noted that the first two terms in (59) are the same as the third KdV

invariant.

The method presented enables us to derive higher order adiabatic invariants, as

well.
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5 Near-Identity Transformation for KdV2 in Fixed Frame

Our research was performed in the fixed reference frame. It was motivated by two

facts. First, already pointed out in [24, Eq. (39)], even for KdV energy has nonin-
variant form (Ali and Kalisch [3] showed this fact in dimension variables). Second,

our purpose is to study invariants, and approximate invariants not only for KdV and

KdV2, but also for the KdV2 equation with non-flat bottom, derived in [23, 26]. For

this equation it is only the fixed reference frame that makes sense.

Second order versions of KdV type equations are not unique since there exist

transformations which transform the given equation into an equation of the same form

but with some coefficients altered. These equations are asymptotically equivalent,

that is, their solutions converge to the same form when small parameters tend to zero.

Therefore such transformation, called near-identity transformation (NIT), is often

used to convert higher order nonlinear differential equations to their asymptotically

equivalent forms which can be integrable. Such NIT was first introduced by Kodama

[29, 30] and then used and generalized by many authors, see, e.g., [9–11, 13, 15,

16, 19, 34]. Below we apply NIT in the form suitable for the KdV2 equation.

Introduced below is the near-identity transformation in the form used by the

authors of [9]

η = η	 + αaη	2 + βbη	
xx + . . . , (60)

where a, b are some constants. (Here, we choose + sign. The inverse transformation,

up to terms of second order, is η	 = η − αaη2 − βbηxx + . . .).

NIT should preserve the form of the KdV2 (47), at most altering some coefficients.

Then it is possible to choose coefficients a, b of NIT such that the transformed

equation possesses a Hamiltonian (see the consequences in the Sect. 5.2).

Insertion (60) into (47) yields (terms of order higher than the second in α,β are

neglected)
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η	
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�
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Since terms with time derivatives (η	
t, η

	
xxt) appear in first order with respect to small

parameters we can replace them by appropriate expressions obtained from KdV2

(47) limited to first order, that is from KdV (20)

η	
t = −η	

x − 3

2
αη	η	

x − 1

6
βη	

3x (62)
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and

η	
xxt = ∂xx
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−η	
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2x + η	η	

3x) − 1
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Inserting (62) and (63) into (61) one obtains
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360
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Equation (64) for η	 has the same form as KdV2 (47) with only two coefficients

altered. The coefficient in front of the term with α2η2ηx is changed from − 3
8

to

− 3
8

+ 3
2
a and the coefficient in front of the term with αβηxη2x is changed from 23

24
to

23
24

+ a − 3b.

5.1 NIT—Second Adiabatic Invariant

For the NIT-transformed KdV2 equation (64) one can find the second invariant in

the same way as previously, that is multiplying (64) by η	 and requiring that the

coefficient in front of the non-integrable term vanishes. This gives

� ∞

−∞
η	

�
5

12
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3x +
�
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24
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�
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�
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Since � ∞

−∞
η	2η	

3x dx = −2

� ∞

−∞
η	η	

xη
	
2x dx (66)

one obtains

�
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5
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24
+ a − 3b
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−∞
η	η	

xη
	
xx dx = 0 =⇒ a − 3b + 1

8
= 0. (67)

Then under the condition

a − 3b = −1

8
(68)

the integral

� ∞

−∞
η	2dx is the exact invariant of the Eq. (64).

Using inverse NIT

η	 = η − αaη2 − βbηxx + . . . , (69)
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and neglecting higher order terms, one gets

� ∞

−∞
η	2dx ≈

� ∞

−∞

�
η2 − 2αaη3 − 2βbηηxx

�=
� ∞

−∞

�
η2 − 2αaη3 + 2βbη2

x

�
dx, (70)

where the last term was obtained through integration by parts. The r.h.s. of (70) is

the most general form of the second adiabatic invariant of KdV2 under the condition

(68), that is, one parameter family of adiabatic invariants

I (2)
ad =

� ∞

−∞

�
η2 − 2αaη3 + 2βbη2

x

�
dx ≈ const. (71)

In particular, with a = 0, b = 1
24

I (2)
ad =
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−∞

�
η2 + 1

12
βη2

x

�
dx = I (2β)

ad (72)

and with b = 0, a = − 1
8

I (2)
ad =

� ∞

−∞

�
η2 + 1

4
αη3

�
dx = I (2α)

ad . (73)

These adiabatic invariants are the same as those obtained in the direct way in (51)

and (55).

The above formulas come from NIT (60) in which the sign + was used. However,

if in (60) the sign − is chosen then the condition (68) is replaced by a − 3b = 1
8
.

The signs of the inverse NIT become opposite and then the final forms of adiabatic

invariants remains the same as in (71)–(73).

5.2 NIT—Third Adiabatic Invariant

NIT-transformed KdV2 (64) describes waves in the fixed frame. In order to determine

its Hamiltonian form let us convert (64) to a moving frame by transformation

x̄ = x − t, t̄ = t, ∂x = ∂x̄, ∂t = −∂x̄ + ∂t̄ . (74)

Then (64) can be written in more general form as

ηt̄ + αAηηx̄ + βBη3x̄ + α2A1η
2ηx̄ + β2B1η5x̄ + αβ (G1ηη3x̄ + G2ηx̄η2x̄) = 0, (75)

where
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A = 3

2
, B = 1

6
, A1 = −3

8
+ 3

2
a, B1 = 19

360
, G1 = 5

12
G2 = 23

24
+ a − 3b. (76)

In the following we drop bars over t and x, remembering that now we work in the

moving reference frame.

In particular, the parameters a, b of NIT can be chosen such that

G2 = 2G1. (77)

In this case the Hamiltonian for the Eq. (75) exists. The condition (77) with (76)

gives
23

24
+ a − 3b = 2

5

12
=⇒ a − 3b = −1

8
.

This is the same condition as (68). This condition supplies one parameter family of

NIT, assuring Hamiltonian form of the NIT-transformed KdV2 (75) in the moving

frame.

This Hamiltonian form is

η	
t = ∂

∂x

�
δH

δη	

�
, (78)

where the Hamiltonian H = � ∞
−∞ H dx has density
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Since H = H (η	, η	
x, η

	
xx), then the functional derivative in (78) is

δH
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Insertion (80) into (78) yields

η	
t = −αAη	η	

x − βBη	
3x − α2A1η

	2η	
x + β2B1η

	
5x − αβG1(2η	

xη
	
xx + η	η	

xx). (81)

We see that the Hamiltonian form of KdV2 in the moving frame exists under the

condition that the coefficient at the term η	
xη

	
xx is two times larger that the coefficient

at the term η	η	
xxx. This is obtained by a proper choice of a, b parameters of NIT,

which is the condition (68).

Now, the Hamiltonian is the exact constant of motion for the NIT-transformed

equation (75) under the condition (68)
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In order to obtain the adiabatic invariant of the original Eq. (47) it is necessary to

perform the inverse NIT, that is

η	 = η − αaη2 − βbηxx (83)

and then to neglect in the Hamiltonian density all higher order terms. This yields

H = − 1

6
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2
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�
1

2
aA − 1

12
A1

�
η4 (84)

+ β2

�
−1

2
B1η

2
2x − bBηxη3x

�
+ αβ

��
1

2
G1 − 2aB

�
ηη2

x + 1

2
bAη2η2x

�
,

with the condition (68).

Now, we restore the original notation A = η and numerical values of coeffi-

cients (76). Using relations which come from integration by parts
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and changing irrelevant sign one obtains finally
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. (85)

We obtain one parameter family (68) of adiabatic invariants related to energy.

In a particular case, when in (68), we set a = 0, b = 1
24

and then

I (3)
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When, in (68), we set a = − 1
8
, b = 0, then we obtain

I (3)
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�
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Another particular form of (85) can be obtained when one sets

19

720
− 1

6
b = 0 =⇒ b = 19

120
, a = 7

20
.

Then, (85) reduces to
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I (3)
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In a similar way one can set

1

3
a + 3

2
b − 5

24
= 0 =⇒ b = 1
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, a = 7

40
.

In this case the adiabatic invariant has the form

I (3)
ad =

� ∞
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�
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4
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12
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x − 9
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720
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�
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5.3 Momentum and Energy for KdV2

Relations between invariants and conservation laws are not as simple as might be

expected, even for KdV. In this subsection we present these relations for motion in

a fixed reference frame. Expressions of energy for KdV and KdV2 in the moving

frame can be found in [24, 28].

5.3.1 KdV Case

The first KdV invariant,
� ∞
−∞ η dx = const, represents volume (mass) conservation

of the incompressible fluid.

When components of momentum are calculated as integrals over the fluid volume

from momentum density the results are as follows.

px = p0

� ∞
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�
η + 3

4
αη2

�
dx = p0

�
I1 + 3

4
α I2

�
and py = 0, (90)

where p0 is a constant in units of momentum. Since the vertical component of the

momentum is zero and the horizontal component is expressed by the two lowest

invariants we have the conservation of momentum law.

The total energy in the fixed frame is, see, e.g., [24, Eq. (39)] (E0 is a constant in

energy units)

Etot = E0
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= E0
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x dx
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The energy (91) in the fixed reference frame has noninvariant form. The last term

in (91) generates tiny deviations from energy conservation only when ηx changes in

time in the soliton frame of reference, which occurs during soliton collisions only.

5.3.2 KdV2 Case

Volume conservation, I1 = � ∞
−∞ η dx = const, is fulfilled for KdV2, too.

Calculation of momentum components within second order approximation of

Euler’s equations gives also a vanishing vertical component py = 0. For a horizontal

component one gets

px = p0

� ∞

−∞

�
η + 3

4
αη2 − 1

8
α2η3 − 7

48
αβη2

x

�
dx (92)
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36
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.

The total momentum of the fluid is composed of two terms. The first is proportional

to the volume. The second, an integral in the lower row of (92), contains the same

functional terms η2, η3, η2
x as the expressions for the second adiabatic invariants (56)

and (71) but with slightly different coefficients. Analogously to the KdV case (90)

one can write

px(ad) ≈ p0

�
I1 + 3

4
αI (2)

ad

�
. (93)

We will see in Sect. 6 that px(ad), given by (93) has much smaller deviations from a

constant value than px given by (92).

Energy, Etot = T + V , for the system governed by KdV2 is, see, e.g., [24,

Eq. (91)],

Etot = E0

� ∞

−∞

�
αη + (αη)2 + 1

4
(αη)3 − 3

32
(αη)4 − 7

48
α3βηη2

x

�
dx. (94)

This expression can be written as

Etot = E0

�
αI1 + α2 I2β

ad + α2

� ∞

−∞

�
1

4
αη3 − 1

12
βη2

x − 3

32
α2η4 − 7

48
αβηη2

x

�
dx

�

≈ E0 α
�
I1 + α

�
I2β

ad + αI3
ad

��
, (95)

where I2β

ad is given by (55) and I3
ad was chosen in the form (88). Equation (95) shows

that the energy of the system described by KdV2 in a fixed frame is approximately

given by the sum of exact first invariant and combination of second and third adiabatic

invariants. Since there is one parameter freedom in these adiabatic invariants other

particular approximate formulas for the energy are admissible, as well. Because of
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the approximate character of adiabatic invariants the energy of the system is not a

conserved quantity. When motion of several solitons is considered the largest changes

in the energy occur when solitons change their shapes during collisions, see, e.g.,

[24, Fig. 4].

6 Numerical Tests

One might question how good these invariants are. The calculations given below

offer some insight.

To start with we calculated the time evolution, governed by Eq. (47), for three

particular waves. The finite difference method (FDM) of Zabusky [43], generalized

for precise calculation of higher derivatives [23, 26] was used. The finite element

method (FEM) used for the same problems in [27] give the same results for soliton’s

motion. 1-, 2- and 3-soliton solutions of KdV were chosen as initial conditions. For

the 3-soliton solution the amplitudes were chosen to be 1.0, 0.6 and 0.3, for the 2-

soliton solution the amplitudes were chosen as 1.0 and 0.3 and for the single soliton

the chosen amplitude was 1.0. The profiles of these waves evolving according to (47)

at some instants are presented in Fig. 2. Vertical shifts by 0.2 and horizontal shifts

by 30 were used on the figure to avoid overlaps. All these results were obtained for

small parameters α = β = 0.1.
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Fig. 2 Time evolution of initially 1-, 2- and 3-soliton KdV solution according to KdV2 (47).

Reproduced with permission from [21]. Copyright (2017) by Elsevier
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Fig. 3 Numerical precision of the volume conservation law for the three waves displayed in Fig. 2.

Reproduced with permission from [21]. Copyright (2017) by Elsevier

Since the volume should be conserved exactly its presentation can verify the

precision of numerical evolution. The numerical values of this invariant shown in

Fig. 3 are constant up to 10 digits.

6.1 Momentum (Non)Conservation and Adiabatic Invariant
I(2)

ad

To study approximate invariants I (2β)

ad and I (2α)
ad we write each of them as the sum of

two terms

I (2α)
ad =

� ∞

−∞
η2 dx +

� ∞

−∞

1

4
α η3 dx =: Ie(t) + Ia(t), (96)

I (2β)

ad =
� ∞

−∞
η2 dx +

� ∞

−∞

1

12
β η2

x dx =: Ie(t) + Ib(t). (97)

The first terms in (96) and (97) are the same as the exact KdV invariant.

The changes of adiabatic invariants I (2α)
ad (96) and I (2β)

ad (97) presented in Fig. 4

correspond to waves displayed in Fig. 2. In this scale both adiabatic invariants look

perfectly constant. To verify how good these invariants are we show how they change

with respect to the initial values.

Figure 5 shows changes in the quantities Ie, Ia and Ib for all three 1-, 2-, and

3-soliton waves presented in Fig. 2. These relative changes are defined as

Ie = Ie(t) − Ie(0)

Ie(0) + Ia(0)
, Ia = Ia(t) − Ia(0)

Ie(0) + Ia(0)
, Ib = Ib(t) − Ib(0)

Ie(0) + Ia(0)
.
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Fig. 4 Absolute values of the adiabatic invariants (96) and (97) for the time evolution shown in

Fig. 2. Reproduced with permission from [21]. Copyright (2017) by Elsevier
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Fig. 5 Relative changes of Ia and Ib as a functions of time for the three waves presented in Fig. 2.

Reproduced with permission from [21]. Copyright (2017) by Elsevier

The figure shows that the corrections Ia, Ib to the KdV invariant Ie have almost the

same absolute values as Ie but with opposite sign. Therefore one can expect that their

summations with Ie should only produce small variations of approximate invariants

I (2α)
ad and I (2β)

ad .

Figure 6 confirms this expectation. For long term evolution, the relative variations

of presented approximate invariants are less than the order of 0.00025.



200 P. Rozmej and A. Karczewska

-0.0002

-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

0.00015

0.0002

0.00025

0 100 200 300 400 500 600
t

Ie+Ia -1sol
Ie+Ib -1sol

Ie+Ia -2sol
Ie+Ib -2sol

Ie+Ia -3sol
Ie+Ib -3sol

Fig. 6 Relative changes of the approximate invariants: I (2α)
ad , denoted as Ie + Ia and I (2β)

ad denoted

as Ie + Ib for the three waves displayed in the Fig. 2. Reproduced with permission from [21].

Copyright (2017) by Elsevier
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Fig. 7 Relative changes of px (92) as a function of time for the three waves presented in Fig. 2

As we have already mentioned the fluid momentum is related to the adiabatic

invariant I (2)
ad . Let us compare the momentum given by definition (92) with its approx-

imation expressed by adiabatic invariant (93). The former is presented in Fig. 7. In

the latter, displayed in Fig. 8, for I (2)
ad we used (56) with ε = 1

2
. It is clear that the

approximate momentum expressed by exact first invariant and adiabatic invariant

I (2)
ad suffers much smaller fluctuations than the exact momentum (92).
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Fig. 8 Relative changes of px(ad) (93) as a function of time for the three waves presented in Fig. 2
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Fig. 9 Relative changes of energy as a function of time for the three waves presented in Fig. 2

6.2 Energy (Non)Conservation and Adiabatic Invariant I(3)
ad

How close to constant values are adiabatic invariants I (2)
ad and I (3)

ad ? The relative

changes of the energy (94) for three waves shown in Fig. 2 are displayed in Fig. 9.

The energy (94) can be approximated by a linear combination of three terms

(95), exact invariant I1 and adiabatic invariants I (2)
ad and I (3)

ad . Relative changes of that

approximate energy (95) are displayed in Fig. 10. Comparing Figs. 9 and 10 we see,

that, as in the case of momentum, the approximate energy expressed by adiabatic

invariants varies less than the exact one.



202 P. Rozmej and A. Karczewska

-1x10-5

-5x10-6

0

5x10-6

1x10-5

1.5x10-5

0 100 200 300 400 500 600

E

t

1-sol
2-sol
3-sol

Fig. 10 Relative changes of energy approximated by adiabatic invariants (95) for the three waves

presented in Fig. 2

Other than volume conservation, which maintains virtually numerical precision

(see, Fig. 3), the adiabatic invariants presented in Figs. 6 and 10, and the energy shown

in Fig. 9 over longer periods slowly decrease with time. In our assessment the reason

can be found in the fact that 1-, 2-, 3-soliton solutions of the KdV equation, taken

as initial conditions, are not exact solutions of the KdV2 equation. The 1-soliton

analytic solution of KdV2 equation derived in [23] preserves exactly its shape and

then possesses the infinite number of invariants. The same is true for recently found

[21] exact analytic periodic solutions of KdV2. However, we doubt the existence of

exact n-soliton solutions for KdV2 as it does not belong to a hierarchy of integrable

equations. Additionally the 2- or 3-soliton solutions of an integrable equation like

those obtained through NIT are likewise not exact solutions of (47). Therefore the

deviations from exact solutions will lead to dissipation.

7 Summary and Conclusions

In this chapter several properties of solutions to the KdV2 equation (extended KdV

equation) are discussed. First, the shallow water problem is formulated within the

framework of the motion of ideal fluid under gravitational force with proper boundary

conditions. After introducing appropriate scaled variables this model can be consid-

ered at different stages of approximation. Next, a general method for derivation of

the wave equation is described which can be applied up to arbitrary order in the

perturbative approach. Limitation to the first order results in the KdV equation (19),

while a second order approach gives KdV2 (26). Then, solutions to KdV are referred
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to and compared to analytic solutions to KdV2 found by us recently (solitonic [23]

and periodic [21] ones). Next, in the main part of the paper, invariants of KdV and

adiabatic invariants of KdV2 are described in detail.

Presented is a means of direct calculation of adiabatic invariants for KdV2 which

was developed in [25]. This method can be applied directly to equations expressed

in the fixed reference frame. Small parameters of α �= β should be of similar order

but not necessarily equal.

The method does not depend on a transformation to a particular moving frame,

nor on a near-identity transformation. This makes calculations of second invariant

simpler. It can be used also to calculate invariants of higher order.

The NIT-based method, developed in Sect. 5, seems to be more suitable for the

adiabatic invariant related to energy since it gives directly the most general form of

this invariant.

Numerical tests have verified that the second and third adiabatic invariants related

to momentum and energy, respectively, have indeed almost constant values. The small

deviations from these almost constant values are largest during soliton collisions.

Because the KdV2 equation has non-integrable form, the energy is not an exact

constant (see, e.g., Fig. 9).

There is, however, an intriguing kind of paradox with KdV2 invariants. On the one

hand, exact invariants related to momentum and energy do not exist, only adiabatic

ones are found. On the other hand, despite the non-integrability of KdV2, there exist

exact analytic solutions of KdV2. The form of the single soliton solution of KdV2

was found in [23, Sect. IV]. Recently, in [21], we found analytic periodic solutions

of KdV2 known as cnoidal waves. These KdV2 solutions have the same form as

corresponding KdV solutions, but with different coefficients. Both of these solutions

preserve their shapes during motion, so for such initial conditions the infinite number

of invariants like those given by (46) exist. When initial conditions have the form

different from analytic solutions only adiabatic invariants are left.
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