Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

Bazy Danych

Ćwiczenie 10: Podstawy języka SQL, część 5, polecenia DDL (CREATE, ALTER, DROP)

opracował: dr hab. inż. Artur Gramacki (a.gramacki@issi.uz.zgora.pl)

Uwaga: w ćwiczeniu wszystkie polecenia *SQL-owe* piszemy ręcznie, bez używania narzędzi wspomagających projektowanie, jak na przykład *Toad Data Modeler*!

Pamiętaj, że w swojej (ewentualnej) przyszłej praktyce zawodowej związanej z bazami danych, wielokrotnie będziesz zmuszony wykonać NATYCHMIAST jakąś BARDZO PILNĄ I WAŻNĄ czynność w bazie danych. Z dużym prawdopodobieństwem nie będzie wtedy dostępne żadne inne narzędzie dostępu do bazy poza prostą konsolą tekstową (np. *MySQL Monitor*; program *mysql.exe*). Dlatego niezwykle istotna będzie wtedy umiejętność pisania poleceń SQL w "czystej" postaci bez stosowania dodatkowych narzędzi wspomagających pracę administratora / użytkownika systemu bazodanowego !!!

1. Utworzyć strukturę relacyjną pokazaną na rysunku (oraz na dołączonym do instrukcji pliku pdf).

Skrypt tworzący należy wykonać w taki sposób, że w pierwszym etapie zostaną stworzone wszystkie tabele oraz odpowiednie dla nich klucze główne PRIMARY KEY a dopiero w drugim etapie zostaną dobudowane (za pomocą polecenia ALTER TABLE) wszystkie ograniczenia typu FOREIGN KEY. Jeżeli chodzi o ograniczenia typu UNIQUE (np. na kolumnie *funkcje.nazwa*), ENUM (np. na kolumnie *pracownicy.plec*) oraz DEFAULT (np. na kolumnie *pracownicy.zarobki*), to

powinny być one utworzone w czasie definiowania tabel jako tzw. ograniczenia tablicowe. Z kolei ograniczenia typu NOT NULL definiujemy jako tzw. ograniczenia kolumnowe. Ograniczenia klucza obcego powinny mieć zdefiniowane nazwy (czy potrafisz wyjaśnić dlaczego?)

- Zwróć uwagę, że w jednym przypadku (którym?) klucz główny tabeli jest kluczem złożonym, opartym o dwie kolumny. Jednocześnie kolumny tworzące klucz główny są też kolumnami tworzącymi klucze obce. Przedyskutuj wady i zalety takiego podejścia.
- 3. Opisać własnymi słowami utworzony model. Jakie jest jego potencjalne zastosowanie. Do opisu jakiego rzeczywistego problemu został on stworzony?
- 4. Wstawić do utworzonych tabel przykładowe rekordy: do tabeli pracownicy 20 rekordów, do tabeli projekty 3 rekordy, do tabeli funkcje 5 rekordów, do tabeli zespoły 20 rekordów. Wartości dla kolumn będących primary key pobierać wykorzystując zdefiniowaną wcześniej opcję AUTO INCREMENT.
- 5. Zmodyfikować definicję tabeli projekty (polecenie ALTER). Dodać kolumnę poziom_trudnosci, tak jak to pokazano na poniższym rysunku.

Projekty			
proj_id	Integer	NN	(PK)
nazwa	Varchar(200)	UNN	
kod	Varchar(20)	UNN	
poziom_trudnosci	Integer	NN	
kierownik_id	Integer	NN	(FK)
data_rozp	Date	NN	
data_zak	Date		

Kolumna ta powinna mieć ograniczenie CHECK i powinna przyjmować tylko wartości ze zbioru (łatwy, średni, trudny). Zwróć uwagę, że kolumna ta powinna pojawić się dokładnie w tym miejscu, jak to pokazano na rysunku (a nie na końcu, jako ostatnia kolumna w tabeli). Ma ona też ograniczenie NOT NULL.

6. Na bazie tabel *customer, ord, item* oraz *product* ze schematu demonstracyjnego zbudować widok (polecenie **CREATE VIEW**) o nazwie *zamowienia_view*. Następujące zapytanie:

```
SELECT * FROM zamowienia_view WHERE razem > 10000;
```

powinno zwrócić wynik jak poniżej:

+	+	+	+	++ Razem
+	+	+	+	++
Big John's Sports Emporium	Bunny Boot	140.00	150	21000.00
Big John's Sports Emporium	Ace Ski Boot	175.00	600	105000.00
Big John's Sports Emporium	Himalaya Bicycle	582.00	1500	873000.00
Hamada Sport	Grand Prix Bicycle	1669.00	85	141865.00
Kuhn's Sports	World Cup Net	115.00	130	14950.00
Kuhn's Sports	Grand Prix Bicycle	1669.00	75	125175.00
Muench Sports	Grand Prix Bicycle	1669.00	19	31711.00
Unisports	Grand Prix Bicycle	1500.00	50	75000.00
Womansport	Pro Ski Pole	36.00	400	14400.00
Womansport	Bunny Boot	135.00	500	67500.00
Womansport	Pro Ski Boot	380.00	400	152000.00
Womansport	Himalaya Bicycle	582.00	600	349200.00
+	+	+	++	++

12 rows in set, 1 warning (0.00 sec)

Struktura widoku jest następująca:

Field		Туре		Null		Кеу	+ ·	Default	Extra
Klient	1	varchar(50)	1	NO	I		T	NULL	 I
Produkt	Т	varchar(50)	Т	NO	Т		I	NULL	I
Cena jedn.	T	decimal(11,2)	Т	YES	Т		L	NULL	I
Ilosc	Τ	int(11)	Т	YES	T		L	NULL	I
Razem	T	decimal(21,2)	Т	YES	T		I	NULL	I

7. Zaproponować oraz zbudować 2 inne **sensowne** widoki na bazie schematu demonstracyjnego.