Robust model predictive control using neural networks

Krzysztof Patan and Piotr Witczak

Institute of Control and Computation Engineering University of Zielona Góra

Introduction

- ➤ Model Predictive Control (MPC) modern control strategy
- > Neural networks useful when dealing with nonlinear problems
- Robustness against model uncertainty and noise a crucial question
- Robustness of nonlinear control system still a challenge
- > Open problems how to deal with robustness of neural network based MPC
- Possible solution, min-max optimization, is time-consuming
- Purpose of the paper to cope with model uncertainties using Model Error Modelling (MEM) and properly redefine the open-loop optimal control problem using uncertainty definition provided by MEM

Modelling and uncertainty estimation

Neural predictor

• One-step ahead prediction

$$\hat{y}(k+1) = f(y(k), ..., y(k-n_a+1), u(k), ..., u(k-n_b+1))$$

where n_a and n_b represent number of past outputs and inputs, respectively

• Function f can be realized using dynamic neural network

$$\hat{y}(k+1) = f(\boldsymbol{x}) = \sigma_o(\boldsymbol{W}_2 \sigma_h(\boldsymbol{W}_1 \boldsymbol{x} + \boldsymbol{b}_1) + \boldsymbol{b}_2)$$

where

$$oldsymbol{x} = [y(k), \ldots, y(k-n_a+1), u(k), \ldots, u(k-n_b+1)]^{\mathsf{T}}$$

 $m{W}_1,\,m{W}_2,\,m{b}_1$ and $m{b}_2$ – weight matrices, σ_h and σ_o – activation functions

• *i*-step ahead prediction

 $\hat{y}(k+i) = f(y(k+i-1), ..., y(k+i-n_a), u(k+i-1), ...u(k+i-n_b))$

 Measurements of the output are available up to time k – one should substitute predictions for actual measurements since these do not exist

$$y(k+i) = \hat{y}(k+i), \quad \forall i > 1$$

Uncertainty description

- Uncertainty of the model is a measure of unmodelled dynamics, noise and disturbances
- Plant is represented by the family of models

$$\bar{y}(k+1) = \hat{y}(k+1) + w(k)$$

where $w(k) \in \mathcal{W}$ – the additive uncertainty, \mathcal{W} – a compact set

> All possible trajectories are bounded by lower $\underline{w}(k)$ and upper $\overline{w}(k)$ uncertainty estimates

$$\underline{w}(k) \leqslant w(k) \leqslant \overline{w}(k)$$

> w(k) may be a function of past inputs and outputs

Robust model

- Model uncertainty estimation Model Error Modelling
- MEM analyzes residual signal

$$r(k) = y(k) - \hat{y}(k)$$

Nonlinear form of the error model

$$\hat{r}(k+1) = f_e(r(k), \dots, r(k-n_{n_a}+1), u(k), \dots, u(k-n_{n_b}+1))$$

where $\hat{r}(k+1)$ – an estimate of the residual at the time instant k+1 n_{n_a} and n_{n_b} – the number of past residuals and inputs, respectively

Final representation of a robust model

$$\bar{y}(k) = \hat{y}(k) + \hat{r}(k)$$

➤ The upper band

$$\overline{w}(k) = \overline{y}(k) + t_{lpha}\sigma$$

➤ The lower band

$$\underline{w}(k) = \overline{y}(k) - t_{\alpha}\sigma$$

where $t_{\alpha} - \mathcal{N}(0, 1)$ tabulated value assigned to $1 - \alpha$ confidence level σ – the standard deviation of the error model output

MEM procedure - step 1

• collect the data $\{u(i), r(i)\}_{i=1}^{N}$ and identify an error model using these data. This model constitutes an estimate of the error due to under modelling, and it is called model error model

MEM procedure - step 2

 construct a model along with uncertainty using both nominal and model error models

Nonlinear MPC

• Cost based on the GPC criterion

$$J = \sum_{i=N_1}^{N_2} e^2(k+i) + \rho \sum_{i=1}^{N_u} \Delta u^2(k+i-1)$$

where
$$e(k + 1) = y_r(k + i) - \hat{y}(k + i)$$

 $\Delta u(k + i - 1) = u(k + i - 1) - u(k + i - 2)$
 $y_r(k + i)$ - the future reference signal
 $\hat{y}(k + i)$ - the prediction of future outputs
 $u(k)$ - the control signal at time k
 $\Delta u(k + i - 1)$ - control change
 ρ - the factor penalizing changes in the control signal

Constraints on control moves

$$\Delta u(k+i) = 0, \quad N_u \leqslant i \leqslant N_2 - 1$$

Constraints on process variable v

$$\underline{v} \leqslant v(k+j) \leqslant \overline{v}, \quad \forall j \in [0, N_v]$$

where N_v – constraint horizon $\frac{\underline{v}}{\overline{v}} - \text{lower limits} \\ \overline{\overline{v}} - \text{upper limits}$

• Terminal constraints, e.g.

$$e(k+N_p+j)=0, \quad \forall j \in [1, N_c]$$

where N_c – terminal constraint horizon

Problem definition

Let us redefine the nonlinear model predictive control based on the following open-loop optimization problem

$$\boldsymbol{u}(k) \stackrel{\scriptscriptstyle \Delta}{=} \arg\min J$$
 (1a)

s.t.
$$e(k + N_2 + j) = 0, \quad \forall j \in [1, N_c]$$
 (1b)

$$\Delta u(k+N_u+j)=0, \quad \forall j \ge 0 \tag{1c}$$

$$\underline{u} \leqslant u(k+j) \leqslant \overline{u}, \quad \forall j \in [0, N_u - 1]$$
(1d)
$$\underbrace{u} \leqslant \widehat{u}(k+j) \leqslant \overline{u}, \quad \forall j \in [N, N_u]$$
(1e)

$$\underline{y} \leqslant \hat{y}(k+j) \leqslant \overline{y}, \quad \forall j \in [N_1, N_2]$$
(1e)

where $\underline{u},\,\overline{u}$ – lower and upper control bounds $\underline{y},\,\overline{y}$ – lower and upper bounds for output predictions

Robust MPC synthesis

- > A possible way to achieve robust MPC defining output constraints
- > Then, the inequality constraint (1e) can be represented in the following way:

$$\underline{w}(k+1) \leq \hat{y}(k+i) \leq \overline{w}(k+i)$$

$$\overline{g}_i(\boldsymbol{u}) = \hat{y}(k+i) - \overline{w}(k+i), \quad \underline{g}_i(\boldsymbol{u}) = \underline{w}(k+i) - \hat{y}(k+i)$$

Transformation of the original problem to its alternative unconstrained form - using a penalty cost:

$$\tilde{J}(k) = J(k) + \lambda \sum_{i=N_1}^{N_2} \overline{g}_i^2(\boldsymbol{u}) S(\overline{g}_i(\boldsymbol{u})) + \lambda \sum_{i=N_1}^{N_2} \underline{g}_i^2(\boldsymbol{u}) S(\underline{g}_i(\boldsymbol{u}))$$

where S(x) = 1 if x > 0 and S(x) = 0 otherwise

> The function S(x) makes it possible to consider a set of active inequality constraints at the current iterate of the algorithm

> The objective is to solve the following unconstrained problem:

$$oldsymbol{u}(k) \stackrel{ riangle}{=} { ext{arg min}} \, ar{J}(oldsymbol{u})$$

- ➤ The principle of operation:
 - before the optimization begins, the uncertainty bands $\underline{w}(k+i)$ and $\overline{w}(k+i)$ are determined based on the current control u(k)
 - the optimization procedure starts in order to determine a new control sequence subject to constraints
 - during the optimization, w(k + i) and w(k + i) are independent on the variable u(k); consequently, optimization of the penalty function does not require to calculate additional partial derivatives.

Unmeasured disturbances

- > To deal with unmeasured disturbances, the model of a process can be equipped with the additional term d(k)
- Considering unmeasured disturbances d(k) the neural predictor can be rewritten in the form:

$$\hat{y}(k+1) = f(x) + d(k)$$
 (2)

- > Frequently, d(k) is assumed to be constant within the prediction horizon
- > assuming that d(k) is constant within the prediction horizon, implementation of the optimization procedure does not change
- The only problem here is to find a proper description of the unmeasured disturbances, e.g.

$$d(k) = Kr(k) \tag{3}$$

where r(k) – the residual, K – the gain of the disturbance model

Performance checking

Multiplicative output uncertainty scheme

➤ Representation of the gain

$$v = \bar{v}(1 + \gamma \Delta)$$

where \bar{v} is the nominal (mean) parameter value Δ – any real scalar satisfying $|\Delta| \leq 1$ γ – the relative uncertainty in the parameter v:

$$\gamma = \frac{v_{max} - v_{min}}{v_{max} + v_{min}}$$

Illustrative example

Pneumatic servomechanism

- V_1 , V_2 cylinder volumes A_1 , A_2 - chamber areas P_1 , P_2 - chamber pressures P_s - supplied pressure P_r - exhaust pressure m - load mass y - piston position S_1, \ldots, S_4 - operating values
- u control signal
- S_1 and S_4 are open for $u \ge 0$ S_2 and S_3 are open for u < 0

Modelling

- Training data
 - input in the form of random steps with levels from the interval (-0.245, 0.245)
 - $\bullet\,$ output was contaminated by the white noise with the magnitude equal to 5% of the output signal
- Neural model of the fourth order $(n_a = n_b = 4)$ was used, 8 tangensoidal neurons in the hidden layer, one linear output neuron

Process output (solid/blue) and model output (dashed/red)

Uncertainty modelling

- Training data recorded in closed loop control
 - predictive controller with nominal model of the plant
 - gain uncertainty with $\gamma=$ 0.2 and Δ generated randomly every 10 s
- Neural model specification: $n_{n_a} = 2$, $n_{n_b} = 10$, 10 hidden neurons with hyperbolic tangent activation function, one linear output neuron

Outputs: process (solid/green), model (dashed/blue), robust model (dotted/red)

Control settings

- > Predictive controller set up (MPC): $N_1 = 1$, prediction horizon $N_2 = 10$, control horizon $N_u = 2$, control moves penalty $\rho = 0.003$
- > MPC with disturbance model (MPCD): gain K = 0.01
- > Robust predictive control (RMPC): control moves penalty $\rho = 0.001$, output constraints penalty $\lambda = 0.1$
- > Robust predictive control with disturbance model (RMPCD)
- ➤ Testing conditions:
 - nominal work with different reference signals: random steps, ramp signal, sinusoidal signal
 - 2 parameter uncertainty: $\gamma = 0.2$, Δ generated every 10 time steps
 - Solution white noise affecting the output
- > Quality index Sum of Squared Errors (SSE) calculated on tracking error

Results for random steps reference

Control: reference (solid/green), P controller (dashed/blue) and robust MPC (dotted/red)

Controller	nominal	parameter	noise
type	work	variation	
MPC	2.4019	2.2632	2.3848
MPCD	2.3011	2.2555	2.2926
RMPC	2.2545	2.1151	2.2612
RMPCD	2.2455	2.1091	2.2394

Results for modified ramp reference

Control: reference (solid/green), P controller (dashed/blue) and robust MPC (dotted/red)

Controller	nominal	parameter	noise
type	work	variation	
MPC	0.1977	0.2751	0.2277
MPCD	0.1704	0.2483	0.2004
RMPC	0.1599	0.2364	0.1908
RMPCD	0.1589	0.2364	0.1895

Results for sinusoidal reference

Control: reference (solid/green), P controller (dashed/blue) and robust MPC (dotted/red)

Controller	nominal	parameter	noise
type	work	variation	
MPC	0.128	0.1463	0.1398
MPCD	0.0852	0.0976	0.0968
RMPC	0.0856	0.0997	0.097
RMPCD	0.0849	0.0973	0.0957

Concluding remarks

- A new method for robust nonlinear model predictive control was proposed
- The approach uses model error modelling carried out by means of dynamic neural networks
- The proposed numerical solution is very simple to implement and no time consuming
- The solution was tested on the pneumatic servomechanism using different working conditions of the plant with promising results
- > The future work will be focused on the implementation of the robust MPC where the cost function is redefined in such a way that instead of the output of the nominal model $\hat{y}(k)$ the cost uses the output of the robust model $\bar{y}(k)$