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Introduction

ã Model Predictive Control (MPC) – modern control strategy

ã Neural networks – useful when dealing with nonlinear problems

ã Robustness against model uncertainty and noise – a crucial question

ã Robustness of nonlinear control system – still a challenge

ã Open problems – how to deal with robustness of neural network based MPC

ã Possible solution, min-max optimization, is time-consuming

ã Purpose of the paper – to cope with model uncertainties using Model Error
Modelling (MEM) and properly redefine the open-loop optimal control
problem using uncertainty definition provided by MEM
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Modelling and uncertainty estimation

Neural predictor

One-step ahead prediction

ŷ(k + 1) = f(y(k), ..., y(k − na + 1), u(k), ..., u(k − nb + 1))

where na and nb represent number of past outputs and inputs, respectively

Function f can be realized using dynamic neural network

ŷ(k + 1) = f(x) = σo(W 2σh(W 1x + b1) + b2)

where

x = [y(k), . . . , y(k − na + 1), u(k), . . . , u(k − nb + 1)]T

W 1, W 2, b1 and b2 – weight matrices, σh and σo – activation functions

i-step ahead prediction

ŷ(k + i) = f(y(k + i− 1), ..., y(k + i− na), u(k + i− 1), ...u(k + i− nb))

Measurements of the output are available up to time k – one should
substitute predictions for actual measurements since these do not exist

y(k + i) = ŷ(k + i), ∀i > 1
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Uncertainty description

ã Uncertainty of the model is a measure of unmodelled dynamics, noise and
disturbances

ã Plant is represented by the family of models

ȳ(k + 1) = ŷ(k + 1) + w(k)

where w(k) ∈ W – the additive uncertainty, W – a compact set

ã All possible trajectories are bounded by lower w(k) and upper w(k)
uncertainty estimates

w(k) 6 w(k) 6 w(k)

ã w(k) may be a function of past inputs and outputs
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Robust model

ã Model uncertainty estimation – Model Error Modelling

ã MEM analyzes residual signal

r(k) = y(k)− ŷ(k)

ã Nonlinear form of the error model

r̂(k + 1) = fe(r(k), . . . , r(k − nna
+ 1), u(k), . . . , u(k − nnb

+ 1))

where r̂(k + 1) – an estimate of the residual at the time instant k + 1

nna and nnb – the number of past residuals and inputs, respectively

ã Final representation of a robust model

ȳ(k) = ŷ(k) + r̂(k)

ã The upper band
w(k) = ȳ(k) + tασ

ã The lower band
w(k) = ȳ(k)− tασ

where tα – N (0, 1) tabulated value assigned to 1− α confidence level

σ – the standard deviation of the error model output



MSC 2014, Antibes, France, 8–10 October 2013 k.patan@issi.uz.zgora.pl

MEM procedure - step 1

1 collect the data {u(i), r(i)}N
i=1 and identify an error model using

these data. This model constitutes an estimate of the error due to
under modelling, and it is called model error model

Process

Model

Error
Model

ε(k)r̂(k) +
−

r(k)+

−

u(k) y(k)

ŷ(k)
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MEM procedure - step 2

2 construct a model along with uncertainty using both nominal and
model error models

Process

Model

Error
Model

+

+

u(k) y(k)

ŷ(k)

r̂(k)
ȳ(k)
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Nonlinear MPC

Cost based on the GPC criterion

J =
N2∑

i=N1

e2(k + i) + ρ

Nu∑
i=1

∆u2(k + i− 1)

where e(k + 1) = yr(k + i)− ŷ(k + i)
∆u(k + i− 1) = u(k + i− 1)− u(k + i− 2)
yr(k + i) – the future reference signal
ŷ(k + i) – the prediction of future outputs
u(k) – the control signal at time k
∆u(k + i− 1) – control change
ρ – the factor penalizing changes in the control signal



MSC 2014, Antibes, France, 8–10 October 2013 k.patan@issi.uz.zgora.pl

Constraints on control moves

∆u(k + i) = 0, Nu 6 i 6 N2 − 1

Constraints on process variable v

v 6 v(k + j) 6 v, ∀j ∈ [0, Nv]

where Nv – constraint horizon
v – lower limits
v – upper limits

Terminal constraints, e.g.

e(k + Np + j) = 0, ∀j ∈ [1, Nc]

where Nc – terminal constraint horizon
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Problem definition

Let us redefine the nonlinear model predictive control based on the following
open-loop optimization problem

u(k)
M
= arg minJ (1a)

s.t. e(k + N2 + j) = 0, ∀j ∈ [1, Nc] (1b)

∆u(k + Nu + j) = 0, ∀j > 0 (1c)

u 6 u(k + j) 6 u, ∀j ∈ [0, Nu − 1] (1d)

y 6 ŷ(k + j) 6 y, ∀j ∈ [N1, N2] (1e)

where u, u – lower and upper control bounds

y, y – lower and upper bounds for output predictions
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Robust MPC synthesis

ã A possible way to achieve robust MPC – defining output constraints

ã Then, the inequality constraint (1e) can be represented in the following way:

w(k + 1) 6 ŷ(k + i) 6 w(k + i)

gi(u) = ŷ(k + i)− w(k + i), g
i
(u) = w(k + i)− ŷ(k + i)

ã Transformation of the original problem to its alternative unconstrained form
– using a penalty cost:

J̃(k) = J(k) + λ

N2∑
i=N1

g2
i (u)S(gi(u)) + λ

N2∑
i=N1

g2
i
(u)S(g

i
(u))

where S(x) = 1 if x > 0 and S(x) = 0 otherwise

ã The function S(x) makes it possible to consider a set of active inequality
constraints at the current iterate of the algorithm
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ã The objective is to solve the following unconstrained problem:

u(k)
M
= arg min J̄(u)

ã The principle of operation:

before the optimization begins, the uncertainty bands w(k + i) and
w(k + i) are determined based on the current control u(k)

the optimization procedure starts in order to determine a new control
sequence subject to constraints

during the optimization, w(k + i) and w(k + i) are independent on the
variable u(k); consequently, optimization of the penalty function does
not require to calculate additional partial derivatives.
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Unmeasured disturbances

ã To deal with unmeasured disturbances, the model of a process can be
equipped with the additional term d(k)

ã Considering unmeasured disturbances d(k) the neural predictor can be
rewritten in the form:

ŷ(k + 1) = f(x) + d(k) (2)

ã Frequently, d(k) is assumed to be constant within the prediction horizon

ã assuming that d(k) is constant within the prediction horizon,
implementation of the optimization procedure does not change

ã The only problem here is to find a proper description of the unmeasured
disturbances, e.g.

d(k) = Kr(k) (3)

where r(k) – the residual, K – the gain of the disturbance model



MSC 2014, Antibes, France, 8–10 October 2013 k.patan@issi.uz.zgora.pl

Performance checking

ã Multiplicative output uncertainty scheme

ã Representation of the gain

v = v̄(1 + γ∆)

where v̄ is the nominal (mean) parameter value
∆ – any real scalar satisfying |∆| 6 1
γ – the relative uncertainty in the parameter v:

γ =
vmax − vmin

vmax + vmin
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Illustrative example

Pneumatic servomechanism

m

Ps

y

S4S2

S3S1

Pr

V1

A1

P1

V2

A2 P2

V1, V2 – cylinder volumes
A1, A2 – chamber areas
P1, P2 – chamber pressures
Ps – supplied pressure
Pr – exhaust pressure
m – load mass
y – piston position
S1, . . . , S4 – operating valves
u – control signal

S1 and S4 are open for u > 0
S2 and S3 are open for u < 0
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Modelling

Training data

input in the form of random steps with levels from the interval
(−0.245, 0.245)
output was contaminated by the white noise with the magnitude equal
to 5% of the output signal

Neural model of the fourth order (na = nb = 4) was used, 8 tangensoidal
neurons in the hidden layer, one linear output neuron
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Process output (solid/blue) and model output (dashed/red)
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Uncertainty modelling

Training data recorded in closed loop control

predictive controller with nominal model of the plant
gain uncertainty with γ = 0.2 and ∆ generated randomly every 10 s

Neural model specification: nna = 2, nnb
= 10, 10 hidden neurons with

hyperbolic tangent activation function, one linear output neuron
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Outputs: process (solid/green), model (dashed/blue), robust model (dotted/red)
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Control settings

ã Predictive controller set up (MPC): N1 = 1, prediction horizon N2 = 10,
control horizon Nu = 2, control moves penalty ρ = 0.003

ã MPC with disturbance model (MPCD): gain K = 0.01

ã Robust predictive control (RMPC): control moves penalty ρ = 0.001, output
constraints penalty λ = 0.1

ã Robust predictive control with disturbance model (RMPCD)

ã Testing conditions:

1 nominal work with different reference signals: random steps, ramp
signal, sinusoidal signal

2 parameter uncertainty: γ = 0.2, ∆ generated every 10 time steps
3 white noise affecting the output

ã Quality index – Sum of Squared Errors (SSE) calculated on tracking error
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Results for random steps reference
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Control: reference (solid/green), P controller (dashed/blue) and robust MPC (dotted/red)

Controller nominal parameter noise
type work variation

MPC 2.4019 2.2632 2.3848
MPCD 2.3011 2.2555 2.2926
RMPC 2.2545 2.1151 2.2612

RMPCD 2.2455 2.1091 2.2394



MSC 2014, Antibes, France, 8–10 October 2013 k.patan@issi.uz.zgora.pl

Results for modified ramp reference
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Control: reference (solid/green), P controller (dashed/blue) and robust MPC (dotted/red)

Controller nominal parameter noise
type work variation

MPC 0.1977 0.2751 0.2277
MPCD 0.1704 0.2483 0.2004

RMPC 0.1599 0.2364 0.1908

RMPCD 0.1589 0.2364 0.1895
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Results for sinusoidal reference
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Control: reference (solid/green), P controller (dashed/blue) and robust MPC (dotted/red)

Controller nominal parameter noise
type work variation

MPC 0.128 0.1463 0.1398
MPCD 0.0852 0.0976 0.0968
RMPC 0.0856 0.0997 0.097

RMPCD 0.0849 0.0973 0.0957
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Concluding remarks

ã A new method for robust nonlinear model predictive control was
proposed

ã The approach uses model error modelling carried out by means of
dynamic neural networks

ã The proposed numerical solution is very simple to implement and no
time consuming

ã The solution was tested on the pneumatic servomechanism using
different working conditions of the plant with promising results

ã The future work will be focused on the implementation of the robust
MPC where the cost function is redefined in such a way that instead
of the output of the nominal model ŷ(k) the cost uses the output of
the robust model ȳ(k)
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