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Introduction to LMIs
Mile-steps publications

I S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, vol. 15 of SIAM studies
in applied mathematics, SIAM, Philadelphia, 1994. Available at:
https://web.stanford.edu/~boyd/lmibook/lmibook.pdf.

I P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI Matlab
Control Toolbox, The MathWorks Inc., The Mathworks Partner
Series, 1995.

I Y. Ebihara, D. Peaucelle, D. Arzelier, S-Variable Approach to
LMI-Based Robust Control, Communications and Control
Engineering, Springer-Verlag, London 2015.

I J. G. VanAntwerp, R. D. Braatz, A tutorial on linear and bilinear
matrix inequalities, Journal of Process Control, vol. 10, 2000, pp.
363-385.

I and many, many others by Gahinet, Henrion, Bachelier, Chilali,
Boyd, Balakrishnan and others.

https://web.stanford.edu/~boyd/lmibook/lmibook.pdf


Introduction to LMIs

Available solvers

I Matlab LMI Control Toolbox - since Matlab 7 the LMI
Control Toolbox is incorporated into the Robust Control
Toolbox (details available at www.mathworks.com).

I Scilab LMITool available at www.scilab.org
I SeDuMi (download it from
sedumi.ie.lehigh.edu/downloads) (+ YALMIP as a
parser - available at users.isy.liu.se/johanl/yalmip/)

I others (plenty of those released lately, indeed any SDP solver
can be used to solve LMI )

www.mathworks.com
www.scilab.org
sedumi.ie.lehigh.edu/downloads
users.isy.liu.se/johanl/yalmip/


Properties of positive definite matrices

Definition

The matrix P is a positive definite matrix iff P is symmetric,
λi (P) ∈ R and λmin(P) > 0.
P > 0 means that P is positive definite.

Properties
I P > 0⇔ xTPx > 0 ∀x 6= 0
I svd(P) = UΛUT where U is a unitary matrix (UUT = I )
I P > 0⇔ P−1 > 0 and hence P is non-singular.
I if A > 0 and B > 0 then A + B > 0
I if A > 0 and B > 0 then[

A 0
0 B

]
> 0

I P > 0⇔ −P < 0



Linear System Stability
Continuous-time systems

Lyapunov methods

The Lyapunov method for analyzing stability is described in most
texts on process and system dynamics. The basic idea is to search
for a positive definite function of the state (called the Lyapunov
function - in the simplest form V (x) = x(t)TPx(t) where P is a
symmetric positive definite matrix) whose time derivative (i.e.
increment) d

dtV (t) is negative definite.

Interpretation
I V (t) has meaning of process energy,
I d

dtV (x) < 0 means that lim
t→∞

x(t) = 0 i.e. the system is stable.



Linear System Stability
Continuous-time systems

Continuous-Time (CT) Linear Time-Invariant (LTI) System

ẋ(t) = Ax(t), x(0) 6= 0, x(t) ∈ Rn (1)

The CTLTI system (1) is said to be asymptotically stable if

lim
t→∞

x(t) = 0, ∀x(0) 6= 0

The CTLTI system (1) is said to be stable in the sense of
Lyapunov if there exists a Lyapunov function V (x) such that

d

dt
V (x) < 0;



Linear System Stability
Continuous-Time systems

Since V (x) = x(t)TPx(t) and P > 0 then

d

dt
V (x) =ẋ(t)TPx(t) + x(t)TPẋ(t)

Taking into account (1) we obtain

x(t)T (ATP + PA)x(t) < 0, ∀x(t) 6= 0

and hence
ATP + PA < 0

This is an LMI, where P is the matrix variable.



Linear System Stability
Discrete-time systems

Discrete-Time (DT) Linear Time-Invariant (LTI) System

xk+1 = Axk , x0 6= 0, xk ∈ Rn (2)

The DTLTI system (2) is said to be asymptotically stable if

lim
k→∞

xk = 0, ∀x0 6= 0

The DTLTI system (2) is said to be stable in the sense of
Lyapunov if there exists a Lyapunov function V (x) such that

V (xk+1)− V (xk) < 0;



Linear System Stability
Discrete-time systems

Stability

The following statements are equivalent:
I The system (2) is asymptotically stable.
I There exists a quadratic Lyapunov function

V (x) := xTPx > 0, P ∈ Sn

such that the system (2) is stable in the sense of Lyapunov.
I maxi ‖λi (A)‖ < 1.



Linear System Stability

Lyapunov Stability Test

Given the system (2) find if there exists a matrix P ∈ Sn such that

a) V (x) := xTPx > 0;∀x 6= 0

b) V (xk+1)− V (xk) < 0; ∀xk+1 = Axk , x 6= 0

Remarks

V (x) := xTPx > 0, ∀x 6= 0⇒ P > 0

V (xk+1) = xTk+1Pxk+1 = xTk ATPAxk

therefore

V (xk+1)− V (xk) = xTk ATPAxk − xTk Pxk

V (xk+1)− V (xk) = xTk

(
ATPA− P

)
xk

finally

V (xk+1)− V (xk) < 0 if, and only if ATPA− P < 0



Linear System Stability

Lyapunov Stability Test

Given the system (2) find if there exists a matrix P ∈ Sn such that
the LMI (Linear Matrix Inequality)

P > 0, ATPA− P < 0

is feasible.

Note that there exist methods which allow us to solve the stability
problem by direct and more effective methods, e.g.

I compute the eigenvalues of the matrix A

I solve the Lyapunov equality

P > 0, ATPA− P = −I



Yalmip code for stability test

yalmip(’clear’)
% Data
A=[0 1 0; 0 0 1;-0.2 0.3 -0.1];
n=size(A,1)
P=sdpvar(n,n,’symmetric’); % matrix variable
F=set(P>0) % P has to be positive definite
F=F+set(A’*P*A-P< 0) % LMI for stability
Sol=solvesdp(F) % solution
P=double(P) % numerical result
eig(P) % check if OK
checkset(F)



Linear Matrix Inequalities
Formal definition

A linear matrix inequality (LMI) is an expression of the form (the
canonical form)

F(x) := F0 + x1F1 + · · ·+ xnFn < 0

where
I x = (x1, . . . , xn) - vector of unknown scalar entries (decision

variables)
I F0, . . . ,Fn - known symmetric matrices
I < 0’ - negative definiteness (in many publications ≺ 0 for the

matrix notation is used instead of < 0 - depends on you!)



Features of LMIs

LMIs have several intrinsic and attractive features

1. An LMI is convex constraint on x (a convex feasibility set). That is,
the set S := {x : F (x) < 0} is convex. Indeed, if x1, x2 ∈ S and
α ∈ (0, 1) then

F (αx1 + (1− α)x2) = αF (x1) + (1− α)F (x2) > 0

where in the equality we used that F is affine and the inequality
follows from the fact that α  0 and (1− α)  0.

2. While the constraint is matrix inequality instead of a set of scalar
inequalities like in linear programming (LP), a much wider class of
feasibility sets can be considered.

3. Thirdly, the convex problems involving LMIs can be solved with
powerful interior-point methods. In this case ”solved” means that we
can find the vector of the decision variables x that satisfies the LMI,
or determine that no solution exists.



Example - part 1
To confirm that the feasibility set represented by LMI is the convex set,
the following inequality is now considered[

1 0 x1
0 1 x2
x1 x2 1

]
︸ ︷︷ ︸

F (x)

=

[
1 0 0
0 1 0
0 0 1

]
︸ ︷︷ ︸

F0

+x1

[
0 0 1
0 0 0
1 0 0

]
︸ ︷︷ ︸

F1

+x2

[
0 0 0
0 0 1
0 1 0

]
︸ ︷︷ ︸

F2

>0

In this case, we see that the feasible set is the interior of the unit disc(√
x2

1+x2
2¬1

)
,

x
1

x
2

0.5

0.5



Example - part 2

Note that the Schur complement (details will be given) of the
block [

1 0
0 1

]
in previous example gives the equivalent condition

1−
[
x1 x2

] [ 1 0
0 1

] [
x1

x2

]
> 0 ⇔ 1− (x2

1 + x2
2 ) > 0



Example
Two convex sets described by the previous example and

x1 + 0.5 > 0

are given. They can be expressed by the LMI of the form
1 0 x1 0
0 1 x2 0
x1 x2 1 0
0 0 0 x1 + 0.5

 > 0

which represents the convex set depicted below (the intersection of
hyperplane and the interior of the unit circle).

x
1

x
2

0.5

0.5



Linear Matrix Inequalities cont.
Consider the stability condition for CTLTI system described by
ẋ(t) = Ax(t), which states that the system is stable iff there exists a
matrix P > 0 such that the LMI of ATP + PA < 0 is satisfied. Assume
that n = 2. To present it in the canonical form note that

A =

[
a11 a12

a21 a22

]
, P = PT =

[
p11 p12

p12 p22

]
Next, the multiplication due to the structures of matrices A and P
provides the following inequality (note that since aij and pkl are scalars
then aijpkl = pklaij)[

2p11a11 + 2p12a21 p12(a11 + a22) + p22a21 + p11a12

p12(a11 + a22) + p22a21 + p11a12 2p12a12 + 2p22a22

]
< 0

or write it in the canonical form as

p11

[
2a11 a12

a12 0

]
+p12

[
2a21 a22 + a11

a22 + a11 2a12

]
+p22

[
0 a21

a21 2a22

]
< 0



Numerical Solution: Interior-point Algorithm

• Basic idea
I Construct a barrier function φ(x) that is well

defined for strict feasible x and is −ε (where
−∞ < ε� 0) only at the optimal x = x∗ e.g.

φ(x) = − log det (F (x)) = log det
(
F−1(x)

)
I Generate a sequence {x(k)} so that

lim
k→∞

φ(x(k)) = −γ

I Stop if φ(x(k)) is negative enough

• polynomial-time algorithm - number of flops bounded
by mn3 log (C/ε) (for accuracy < ε)

where m is row size of the LMI, n denotes number of

decision variables and C is a scaling factor.

I unconstrained optimization problem

min f (x) = min f0(x) + µφ(x)

= cT x − µ log det (F (x))

I Application of the Newton-like
method

Hk∆xk = −tk

x
*

x
(1)



Analytic solution of the LMI problem

It can be shown that the LMI is equivalent to n polynomial inequalities.
To see consider the well-known result in matrix theory is positive definite
iff, all of its principal minors mi (x) are positive. This means that the
principal minors are multivariate polynomials of indeterminates xi i.e.

m1(x) =F (x)11 =F011 +
n∑

i=1

xiFi11

m2(x) =det
([

F (x)11 F (x)12

F (x)21 F (x)22

])
=

(
F011 +

n∑
i=1

xiFi11

)(
F022 +

n∑
i=1

xiFi22

)

−

(
F021 +

n∑
i=1

xiFi21

)(
F012 +

n∑
i=1

xiFi12

)



Analytic solution of the LMI problem - cont.

mk(x) =det


 F (x)11 · · · F (x)1k

...
. . .

...
F (x)k1 · · · F (x)kk




mn(x) =det(F (x)) =det


 F (x)11 · · · F (x)1n

...
. . .

...
F (x)n1 · · · F (x)kn




where F (x)kl denotes the element on k-th row and l-th column of
F (x).



Analytic solution of the LMI problem - an example

Consider again the problem of finding a block-diagonal matrix
P > 0 (P = diag (Ph,Pv )) such that the following LMI

ATPA− P < 0

or
− ATPA + P > 0 (3)

is satisfied. Since P = diag(x1, x2) and the matrix A is given by

A =

[
a11 a12

a21 a22

]
=

[
0.4942 0.5706
0.1586 0.4662

]



Analytic solution of the LMI problem - an example

The solution of the LMI (3) is equivalent to the solution of the set
of inequalities

m1(x)=− x1(a2
11 − 1)− x2a

2
21 = 0.75576636x1 − 0.02515396x2 > 0

m2(x)=− x1(a2
11 − 1)− x2a

2
21 = 0.32558436x1 + 0.78265756x2 > 0

m3(x)=
(
−x1(a2

11 − 1)− x2a
2
21

)(
−x1a

2
12 − x2(a2

22 − 1)
)

−(−x1a12a11 − x2a22a21)(−x1a12a11 − x2a22a21)

=− 0.32558436x2
1 + 0.5579956166x1x2 − 0.02515396x2

2 > 0
(4)

with
x1 > 0 and x2 > 0 (5)



On the other hand, recall that the LMI is a convex set in Rn defined as

F =

{
x ∈ Rn : F (x) = F0 +

n∑
i=1

xiFi > 0

}

which can be described in terms of principal minors as

F = {x ∈ Rn : mi (x)  0, i = 1, . . . , n}

Hence the inequalities (4) and (5) describe the convex set

x1

p1

p2

x2



Final check

To validate the result, computations for two points
p1 = (x1, x2) = (2, 0.5) and p2 = (x1, x2) = (0.5, 2) will be provided. First
consider the point p1. In this case, the matrix below is obtained

R = ATPA− P =

[
−1.4990 0.6010
0.6010 0.2598

]
Because eigenvalues of the matrix R are λ1 = −1.6847 and λ2 = 0.4456,
it is clear that p1 is not the solution of the considered LMI (see that p1

does not lie inside the feasible set). Taking p2 into computation yields

R =

[
−0.3276 0.2889
0.2889 −1.4025

]
which is negative defined (its eigenvalues are λ1 = −1.4752 and
λ2 = −0.2549).



On the other hand, evaluating the principal minors (4) yields

Table: Principal minors.

p1 p2

m1(x) 0.3759836866 0.3759836866
m2(x) -0.259839940 1.402522940
m3(x) 1.498955740 0.327575260

These results clearly show that in the case of the point (p1 not all
principal minors are positive, hence we conclude again that this
point does not solve the LMI).



Geometry of the LMI

The set of feasible solutions of considered LMI (the feasibility set)
is denoted as follows

F =
{
x ∈ RM : F (x) = F0 +

M∑
i=1

xiFi < 0
}

Due to the fact that LMI is defined in the space of its decision
variables (x ∈ RM) it is possible to present the feasibility set as a
geometrical shape in this space.



Some facts on matrix minors

I For the positive (non-negative) definiteness of F (x) it is
required that all of its diagonal minors to be positive
(non-negative).

I For the negative (non-positive) definiteness of F (x) it is
required that its diagonal minors of odd minors to be negative
(non-positive) and the minors of even degree to be positive
(non-negative) respectively.

I It is straightforward to see that the diagonal minors are
multi-variable polynomials of variables xi . So the LMI set can
be described as

F(x) =
{
x ∈ RM : fi (x) > 0, i = 1, ..,M

}
which is a semi-algebraic set. Moreover, it is a convex set.



F (x1, x2) =

 x1 − 4 −x2 + 2 0
−x2 + 2 −1 x1 − x2

0 x1 − x2 −x1 − 1

 < 0

To find the feasibility region of the above LMI write the conditions for
the diagonal minors of degree: first, second and third in variables x1, x2.
So the minors become

x1 − 4 < 0

−1 < 0 first degree minors

−x1 − 1 < 0 - must be negative

−(x1 − 4)− (−x2 + 2)2 > 0

−(−x1 − 1)− (x1 − x2)2 > 0 second degree minors

(x1 − 4)(−x1 − 1) > 0 - must be positive

−(x1 − 4)(−x1 − 1)

−(−x2 + 2)2(−x1 − 1) third degree minor (detF (x))

−(x1 − 4)(x1 − x2)2 < 0 - must be negative



a) b)

Figure: The solutions for the first (a) and second (b) degree minors

a) b)

Figure: The solutions for the third (a) degree minors and the feasibility
region for the considered LMI (b)



Conclusion

It is straightforward to see that the feasibility region is the
⋂

of the
regions which satisfy the constrains due to corresponding minors.



Matlab solution (script test0.m provides x1 = 1.6667,
x2 = 1.8333). Refer to the figure

Figure: The feasibility region and the Matlab solution



Stabilization via state feedback

Consider the linear time-invariant system with one control input uk
in the form

xk+1 = Axk + Buk , x0 6= 0, xk ∈ Rn, uk ∈ Rm

connected in feedback with the state feedback controller

uk = Kxk

This arrangement produces the following closed-loop system

xk+1 = (A + BK )xk



Stabilization via state feedback

I The considered system can be tested for asymptotic stability
using the Lyapunov method for any given controller K .

I as the result we have the following inequality

P > 0, (A + BK )TP(A + BK )− P < 0

or (for differential system)

P > 0, (A + BK )TP + P(A + BK ) < 0

where P and K are variables (they are unknown).

Unfortunately, one can easily show that the resulting inequalities
are not jointly convex on P and K .



Bilinear Matrix Inequality

Bilinear Matrix Inequality (BMI) has the following form

F (x , y) = F (x , y)T = F0 +
n∑

i=1

xiFi +
m∑
j=1

yjGj +
n∑

i=1

m∑
j=1

xiyjHij < 0

where
I x = (x1, . . . , xn), x ∈ Rn and y = (x1, . . . , ym), y ∈ Rm are

the variables
I symmetric matrices F0, Fi , i = 1, . . . , n, Gj , j = 1, . . . ,m and

Hij , i = 1, . . . , n, j = 1, . . . ,m are given data.

Remark

Unfortunately, BMIs are in general highly non-convex optimization
problems, which can have multiple local solutions, hence solving a
general BMI was shown to be NP-hard problem



Bilinear Matrix Inequality
Consider the following bilinear inequality, i.e. non-convex set

1− xy > 0 (6)

To see this, consider two points on xy -plane which satisfy (6), e.g.
p1 = (x1, y1) = (0.2, 2) and p2 = (x2, y2) = (4, 0.2)
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Obviously, the point in the half way between the two values, i.e.

p3 =
1
2

(0.2, 2) +
1
2

(4, 0.2) = (2.1, 1.1)

does not satisfy (6).



Can BMIs be written in the form of LMIs?

• Consider the following BMI[
x2(−13−5x1 +x2) x2 0

x2 x1 0
0 0 x1(−13−5x1 +x2)−x2

]
>0

I feasibility set is convex !
I the LMI form can be obtained[ −1 + x1 1

1 −1− 5
18 x1 + 1

18 x2

]
> 0
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Methods to reformulate hard problems into LMIs
An important fact from the matrix theory

If some matrix F (x) is positive defined than zTF (x)z > 0, ∀z 6= 0,
z ∈ Rn. Assume now that z = My where M is any given nonsingular
matrix, hence

zTF (x)z > 0

implies that
yTMTF (x)My > 0

This means that some rearrangements of the matrix elements do not
change the feasible set of LMIs.



Methods to reformulate hard problems into LMIs

If the following LMI is feasible[
A B
C D

]
< 0

then immediately the following LMI is feasible too[
D C
B A

]
< 0

where [
D C
B A

]
=

[
0 I
I 0

] [
A B
C D

] [
0 I
I 0

]



Change of variables

In the case of the Lyapunov inequalities, the fact that the nice
inequalities previously obtained are functions of X := P−1,and not P,
suggests that we might start by rewriting the inequalities in terms of X .

X > 0, X (A + BK )T + (A + BK )X < 0

We then manipulate the second inequality by expanding the
products

AX + XAT + BKX + XKTBT < 0.



Change of variables

I introduce the new unknown L = KX

I to eliminate the matrix K , or, in other words, K can be
explicitly expressed in terms of other unknowns, by solving the
change of variable equation for the unknown K . This produces
K = LX−1

I finally, we have to solve the following inequality

X > 0, AX + XAT + BL + LTBT < 0,



Methods to reformulate hard problems into LMIs
Schur complement formula

Quadratic but convex inequality can be converted into the LMI form
using the Schur complement formula given by the following Lemma.

Let A ∈ Rn×n and C ∈ Rm×m be symmetric matrices and A > 0 then

C + BTA−1B < 0

if and only if

U =

[
−A B
BT C

]
< 0 or, equivalently, U =

[
C BT

B −A

]
< 0

The matrix C + BTA−1B is called the Schur complement of A in U.
The identical result holds for a positive defined case.



Schur Complement
An Example

Consider a controller design for discrete LRPs. It can be shown that the
following LMI gives sufficient condition for stability along the pass

(Φ + RK )TW (Φ + RK )−W < 0 (7)

where W > 0 is block-diagonal matrix variable, Φ and R are given
matrices identified in process state-space model as

Φ =

[
A B0

C D0

]
, R =

[
B 0
0 D

]
and

K =

[
K1 K2

K1 K2

]
is the matrix to be found.



Schur Complement
An Example

Applying the Schur complement formula to (7) yields[
−W−1 Φ + RK

ΦT + KTRT −W

]
< 0

The above form is still nonlinear due to the occurrence of terms W−1

and W (hence it can be stated in terms of BMI). To overcome this
problem, introduce the substitution P = W−1 and then multiply the
result from the left and the right by diag (I ,P) to obtain[

−P ΦP + RN

PΦT + NTRT −P

]
< 0 (8)

where N = KP. Now, it is straightforward to see that (8) is numerically
solvable.



Elimination of a norm-bounded matrix
In robustness analysis, we often encounter the following terms

HFE + ETFTHT (9)

where H, E are known real matrices of appropriate dimensions, and the
matrix F represents parameter uncertainties which satisfies

FTF ¬ I or equivalently ‖F‖ ¬ 1

Inequalities which consist of (9) can be transformed into the LMI with
the following Lemma

Lemma

Let H, E be given real matrices of appropriate dimensions and F
satisfy FTF ¬ I . Then for any ε > 0 the following holds

HFE + ETFTHT ¬ εHHT +
1
ε
ETE



Elimination of a norm-bounded matrix - proof

Since it is true that(
ε

1
2HT − ε−

1
2FE

)T (
ε

1
2HT − ε−

1
2FE

)
 0

then expansion of the above yields

ε−1ETFTFE + εHHT  HFE + ETFTHT

Next, observe that

‖F‖ ¬ 1⇔ λmax(FTF) ¬ 1⇔ FTF ¬ I

hence

εHHT +
1
ε
ETE  ε−1ETFTFE + εHHT  HFE + ETFTHT

and the proof is complete.



Elimination of variables

For certain specific matrix inequalities, if is often possible to eliminate
some of the matrix variables.

Lemma
Let Ψ ∈ Rq×q be a symmetric matrix and P ∈ Rr×q and Q ∈ Rs×q be
real matrices then there exists a matrix Θ ∈ Rr×s such that

Ψ + PTΘTQ + QTΘP < 0

if and only if the inequalities

WT
P ΨWP < 0 andWT

Q ΨWQ < 0

both hold, where WP and WQ are full rank matrices satisfying
Im(WP) = ker(P) and Im(WQ) = ker(Q)

It can also be used to eliminate variables from already formulated LMI.
Since some variables can be eliminated, the computation burden can be
reduced greatly.



Elimination of variables - an example

Consider again the stabilisation problem. The right-hand term can be
rewritten as[

−P ΦP + RN

PΦT + NTRT −P

]
=

[
−P ΦP

PΦT −P

]
+

[
R
0

]
N
[

0 I
]

+

[
0
I

]
NT

[
RT 0

]
Using Elimination of Variables Lemma, we obtain

WT
R

[
−P ΦP

PΦT −P

]
WT

R < 0, WT
S

[
−P ΦP

PΦT −P

]
WT

S < 0

where WR = diag(ker(R), I ) and WS = diag(I , 0). These two LMI
conditions can be checked with less computation burden than the LMI
condition provided in the Schur Complement example.



Illustrative computations have been performed for processes of prescribed
order (n) and the results are listed in the below Table.

Table: Execution time comparison.

n Previous example (CPU time) This example (CPU time)
6 0.11 0.06
8 0.22 0.11

12 1.15 0.6
15 19.06 1.76
20 73.44 7.91

Note that all computations have been performed with Lmi Control
Toolbox 1.0.8 under Matlab 6.5. The Matlab-files have been run
on a PC with AMD Duron 600 MHz CPU and 128MB RAM.



Control problems solved with LMIs - details

I The discrete system state-space equation

xk+1 = Axk + Buk

I Lyapunov inequality for discrete system

ATPA− P < 0, P > 0

I Controller design:
The closed loop for the discrete case uk = Kxk (K is the
controller to be designed)

I The stabilization condition for the discrete case

(A + BK )TP(A + BK )− P < 0, P > 0

not the LMI condition since the matrix variables are
multiplied



It requires some operations

1. The stabilization condition for the discrete case
(A + BK )TP(A + BK )− P < 0, P > 0 - not the LMI condition
since the variable matrices are multiplied

2. Schur complement to get[
−P AT + KTBT

A + BK −P−1

]
< 0, P > 0

3. Left- and right- multiplication by diag(P−1, I ) and set Q = P−1[
−Q QAT + QKTBT

AQ + BKQ −Q

]
< 0, Q > 0

4. Setting K = NQ−1 to obtain finally the LMI[
−Q QAT + NTBT

AQ + BN −Q

]
< 0, Q > 0



Operations to be performed for CTLTI systems

1. the Closed loop Lyapunov inequality

(A + BK )TP + P(A + BK ) < 0, P > 0

2. the congruence transformation (left- and right- multiplication) by
P−1 to get

P−1(A + BK )T + (A + BK )P−1 < 0, P−1 > 0

3. set Q = P−1

QA + QKTBT + AQ + BKQ < 0, Q > 0

4. finally set K = NQ−1 to obtain the following LMI

QA + NTBT + AQ + BN < 0, Q > 0



Standard LMI problems

The LMI software can solve the LMI problems formulated in three
different forms:

I feasibility problem,
I linear optimization problem,
I generalized eigenvalue minimization problem.



Feasibility problem

A feasibility problem is defined as follows

Definition

Find a solution x = (x1, . . . , xn) such that

F (x) > 0 (10)

or determine that the LMI (10) is infeasible.

A typical situation for the feasibility problem is a stability problem
where one has to decide if a system is stable or not (an LMI is
feasible or not).



Linear objective minimization problem

Definition
Minimize a linear function cT x (x = (x1, . . . , xn)), where c ∈ Rn is a
given vector, subject to an LMI constraint (10) or determine that the
constraint is infeasible. Thus the problem can be written as

min cT x

subject to F (x) > 0

This problem can appear in the equivalent form of minimizing the
maximum eigenvalue of a matrix that depends affinely on the variable x ,
subject to an LMI constraint (this is often called EVP)

min λ

subject to λI − F (x) > 0



Generalized eigenvalue problem
The generalized eigenvalue problem (GEVP) allows us to minimize the
maximum generalized eigenvalue of a pair of matrices that depend
affinely on the variable x = (x1, . . . , xn). The general form of GEVP is
stated as follows

min λ

subject to


A(x) < λB(x)

B(x) > 0

C (x) < D(x)

(11)

where C (x) < D(x) and A(x) < λB(x) denote set of LMIs. It is
necessary to distinguish between the standard LMI constraint, i.e.

C (x) < D(x)

and the LMI involving λ (called the linear-fractional LMI constraint)

A(x) < λB(x)

which is quasi-convex with respect to the parameters x and λ. However,
this problem can be solved by similar techniques as those for previous
problems.



The stability margins

Known facts from matrix theory

For any symmetric matrix Q

I λmin(Q)I ¬ Q ¬ λmax(Q)I

I λmax(Q + I ) ¬ λmax(Q) + λmax(I )

Degree of stability

The LTI system has a degree of stability equal to q > 0, iff ∃P > 0
such that

[A + qI ]TP[A + qI ]− P < 0

for DTLTI or
[A + qI ]TP + P[A + qI ] < 0

for CTLTI



The stability margins

For CTLTI systems we have[
−Q (1 + q)(QAT + NTBT )

(1 + q)(AQ + BN) −Q

]
< 0, Q > 0

K = NQ−1

Remark

Since(1 + q) is a scalar, so for any matrix, say T , holds
(1 + q)T = T (1 + q)

To get the GEVP condition, the follow the steps (on the next slide)



The stability margins - GEVP
I [

−Q QAT + NTBT

AQ + BN −Q

]
<−q

[
0 QAT + NTBT

AQ + BN 0

]
, Q > 0

I multiply it by q−1 (positive since q > 0) and set λ = q−1 and then
by −1 to obtain[

0 QAT + NTBT

AQ + BN 0

]
<λ

[
Q −QAT − NTBT

−AQ − BN Q

]
, Q > 0

I write it as the GEVP

min λ s.t.
[

0 QAT + NTBT

AQ + BN 0

]
<λ

[
Q −QAT − NTBT

−AQ − BN Q

]
[

−Q QAT + NTBT

AQ + BN −Q

]
< 0

I K = NQ−1, q = λ−1

I note that the additional constraint is just the stability condition in
this case



D-stability (Poles placement)
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LMI regions

LMI region is any subset D of the complex plane that can be
defined as

D = {z ∈ C : L + zM + z̄MT < 0} (%)

where L and M are real matrices and L = LT

The matrix-valued function

fD(z) = L + zM + z̄MT

is called the characteristic function of D



LMI regions

A real matrix A is D-stable, i.e. has all eigenvalues inside the D region iff
there exists a symmetric matrix X > 0 such that the following LMI holds

L⊗ X + M ⊗ (XA) + MT ⊗ (ATM) < 0 ($)

where ⊗ denotes the Kronecker product
Very important result !!! - indeed, this generalizes all we said about
the stability



Common known D regions
I half-plane Re(z) < −α : z + z̄ + 2α < 0

I special case of the above i.e. Re(z) < 0 : z + z̄ < 0 - the stability
region for the differential system described by A

I disc centered at (−q, 0) with radius r[
−r q + z

q + z̄ −r

]
< 0

I ellipse centered at (−q, 0) with radiuses a-horizontal and b-vertical[
−2a −2g+(1+a/b)z+(1−a/b)z̄

−2g+(1−a/b)z+(1+a/b)z̄ −2a

]
=

[
−2a −2g
−2g −2a

]
+z

[
0 (1+a/b)

(1−a/b) 0

]
+z̄

[
0 (1−a/b)

(1+a/b) 0

]
= L + zM + z̄MT < 0

I conic sector with apex at the origin and inner angle (see reference)

I any intersection(s) of the above



Application in control

Note, that it is now easy to find the LMI condition which checks, if
matrix eigenvalues lay inside chosen region - weak? Yes, but ...
Instead of A write it in the closed loop configuration i.e. A + BK - we get
the way to drive A to have eigenvalues inside chosen region using
controller K - strong enough!
So, the procedure is as follows

I choose D
I write it as LMI region (%)

I write ($)

I use some linear algebra operations to get programmable LMI

I solve it using your favorite software



D-stabilization - example
1. choose ellipse[
−2a −2g
−2g −2a

]
+ z

[
0 (1 + a/b)

(1− a/b) 0

]
+ z̄

[
0 (1− a/b)

(1 + a/b) 0

]
= L + zM + z̄MT < 0

2. set A = A + BK

3. condition for the closed loop system

L⊗ X + M ⊗ (XA) + MT ⊗ (ATX ) < 0

which can be rewritten as[
−2aX (∗)

−2gX + (1 + a
b )ATX + (1− a

b )XA −2aX

]
< 0

4. set A = A + BK to obtain[
−2aX (∗)

−2gX + (1 + a
b )(A + BK )TX + (1− a

b )X (A + BK ) −2aX

]
< 0

not LMI - again X and K multiplied



5 Pre and post multiply it by diag(X−1,X−1) and set Y = X−1

to obtain[
−2aY (∗)

−2gY +(1+ a
b )YAT +YKTBT +(1− a

b )AY +BKY −2aY

]
<0

which still isn’t the LMI

6 set K = NY−1 to obtain the LMI[
−2aY (∗)

−2gY +(1+ a
b )YAT +NTBT +(1− a

b )AY +BN −2aY

]
<0



Robust stability

DTLTI Uncertain system

xk+1 = Axk , x0 = 0, xk ∈ Rn, A ∈ A

where A is an arbitrary closed convex set

Robust Stability

The DTLTI uncertain system is said to be robustly stable if it is
asymptotically stable for all A ∈ A.

Problem

The set of all (discrete-time) stable matrices is not a convex set.



Problem with robust stability for discrete system

Let us consider a set formed from 2 vertices and assume that they are

A1 =

[
0.5 2
0 0.5

]
, A2 =

[
0.5 0
2 0.5

]
Based on well known fact that stability in the discrete case is guaranteed
if and only if all eigenvalues of a system matrix lie in the interior of the
unit circle, it can be seen that the matrices A1 and A2 are stable
(λmax(A1) = 0.5 and λmax(A2) = 0.5). However, a convex combination
yields

A = 0.5A1 + 0.5A2 =

[
0.5 1
1 0.5

]
and λmax(A) = 1.5. This means that A is unstable.



Uncertainty

Main models of uncertainty

I norm-bounded
I polytopic
I affine



Norm-bounded model of uncertainty

This model of uncertainty corresponds to a system which matrices
uncertainty are modelled as an additive perturbation to the
nominal system matrices. Therefore a system is said to be
subjected to norm-bounded parameter uncertainty if matrices of
such a system can be written in the form

M = M0 + ∆M = M0 + HFE

where H and E are some known constant matrices with compatible
dimensions and M0 defines the nominal system. F is an unknown,
constant matrix which satisfies

FTF ¬ I



Norm-bounded model of uncertainty

Important: The inequality

FTF ¬ I

represents a convex set.
To see this, apply the Schur complement formula to obtain

FTF ¬ I ⇔
[

I F
FT I

]
 0



Polytopic model of uncertainty

This model of uncertainty corresponds to a system which matrices
range in the polytope of matrices. This means that each system
matrix M is only known to lie in a given fix polytope of matrices
described by

M ∈ Co (M1,M2, . . . ,Mh)

where Co denotes the convex hull. Then, for positive
i = 1, 2, . . . , h, M can be written as

M :=

{
X : X =

h∑
i=1

αiMi , αi  0,
h∑

i=1

αi = 1

}



Polytopic model of uncertainty

As a simple example, the polytope formed from 4 vertices:
M1,M2,M3 and M4 is depicted below

M
1M

2

M
3

M
4

Figure: A polytope



Affine model of uncertainty
This model of uncertainty corresponds to a system which matrices are
modelled as a collection of fixed affine functions of some varying
parameters p1, . . . , pk i.e. each matrix can be written in the form

M(p) = M0 + p1M1 + . . .+ pkMk (12)

where Mi ∀i = 0, 1, . . . , k are given. Parameter uncertainty is described
with range of parameter values. It means that each parameter pi ranges
between two known extremal values pi (minimum) and pi (maximum),
therefore it can be written as

pi ¬ pi ¬ pi

Furthermore, the set of uncertain parameters is

∆ ,
{
p=(p1, p2, . . . , pk) : pi ¬ pi ¬ pi , i =1, . . . , k

}
and the set of corners of uncertainty region ∆0 is defined as

∆0 ,
{
p=(p1, p2, . . . , pk) : p ∈ {pi , pi}, i =1, . . . , k

}



Affine model of uncertainty
As an example of a set of uncertain parameters, consider 3
parameters: p1, p2, p3 whose values range in the parameter box
formed by their extremal values in 3-D parameter space

p2

p3

p2

p3

p2
p3

p1

p1

p1

Figure: 3-D parameter space



Form affine to the polytopic form

It is clear that M(p) is an affine function in p = (p1, p2, . . . , pk),
thus it maps these corners to the polytope of vertices. In this case
each vertex can be determined ∀p ∈ ∆0 with the formula below

Mi = M0 + p1M1 + . . .+ pkMk

where i = 1, .., 2k .

p1

p1

p1

p2p2p2

M1

M2

M4

M3



Norm-bounded uncertainty

I The system plant Φ :=

[
A B
C D

]
I Uncertainties

∆Φ :=

[
∆A ∆B
∆C ∆D

]
=

[
H1

H2

]
F (k)

[
E1 E2

]
I Unknown matrix ||F (k)|| < 1
I The uncertain system plant matrix is Φ + ∆Φ

Note on an unknown matrix

In general

||F (k)|| ¬ γ ⇔ σ2
max(F (k)) = λmax(F (k)TF (k)) ¬ γ2I

⇔ F (k)TF (k) ¬ γ2I



Norm-bounded uncertainty

Discrete case - controller design (so we want to get the condition for computing K)

I For simplicity take F (k) = F - no loose of generalization
I The Lyapunov inequality for the closed loop uncertain system

(A + H1FE1 + BK + H1FE2K)TP(A + H1FE1 + BK + H1FE2K)−P < 0, P > 0

I Schur complement gives[
−P AT +ET

1 FTHT
1 +KTBT+KTET

2 FTHT
1

A+H1FE1 +BK+H1FE2K −P−1

]
<0

I and then[
−P AT + KTBT

A + BK −P−1

]
+

[
0 ET

1 FTHT
1 + KTET

2 FTHT
1

H1FE1 + H1FE2K 0

]
< 0, P > 0



Towards LMI formulation

I Furthermore[
−P AT +KTBT

A+BK −P−1

]
+

[
ET

1 +KTET
2

0

][
FT

][
0 HT

1

]
+

[
0
H1

][
F
][

E1 +E2K 0
]
<0, P > 0

I Apply the appropriate Lemma to obtain[
−P AT +KTBT

A+BK −P−1

]
+ε−1

[
ET

1 +KTET
2

0

][
E1 +E2K 0

]
+ ε

[
0
H1

][
0 HT

1

]
<0, P > 0



I write it as (since ε > 0 is a scalar)[
−P AT +KTBT

A+BK −P−1

]
+

[
ET

1 +KTET
2

εH1

]
ε−1I

[
E1 +E2K εHT

1

]
<0, P > 0

I Apply the Schur complement again[
−P AT +KTBT ET

1 +KTET
2

A+BK −P−1 εH1

E1 +E2K εHT
1 −εI

]
<0, P > 0

still not the LMI
I congruence by diag(P−1, I , I ) and set Q = P−1[

−Q QAT + QKTBT QET
1 + QKTET

2
AQ + BKQ −Q εH1

E1Q + E2KQ εHT
1 −εI

]
< 0, Q > 0

I finally set K = NQ−1 to obtain the LMI[
−Q QAT + NTBT QET

1 + NTET
2

AQ + BN −Q εH1

E1Q + E2N εHT
1 −εI

]
< 0, Q > 0



Thank you very much for your attention
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