6. TESTY ZGODNOŚCI

Wynikiem działania testów statystycznych w STATISTICE są graniczne poziomy istotności p-value. Decyzję o **odrzuceniu** hipotezy H_0 można podjąć, gdy:

założony poziom istotności α jest większy od poziomu granicznego p-value.

O braku podstaw do odrzucenia hipotezy H₀ świadczy:

poziom istotności α mniejszy od granicznego poziomu istotności p-value.

W przypadku kilku testów nie ma możliwości określenia wartości poziomu α (domyślnie przyjmowany jest poziom istotności $\alpha = 0,05$).

Dla ułatwienia, wyniki testów, które dla ustalonego poziomu istotności α wymagają odrzucenia hipotezy H_0 , zaznaczane są na czerwono.

W testach zgodności weryfikowane są hipotezy dotyczące zgodności próby z pewnym rozkładem teoretycznym. W STATISTICE dostępne są najczęściej stosowane testy zgodności: test χ^2 i test Kołmogorowa–Smirnowa.

6.1. Test zgodności χ²

Test χ^2 można przeprowadzić z poziomu okna **Dopasowanie rozkładu** (dostępne z menu głównego: **Statystyka/ Dopasowanie rozkładu**).

W pierwszym kroku należy wybrać rozkład teoretyczny do którego dane z próby będą porównywane.

Następnie należy określić zmienną, która zawiera analizowane dane (w oknie na kolejnym rysunku do testu została wybrana zmienna długość.

X Dopasowanie

🔜 Zmienna:

Podstawowe Pa

Liczba k<u>a</u>tegorii: Doļna granica: Góma granica:

Średnia (M):

Warjancja:

Średnia obserwow Wariancja obserw

Norm

dł

Rozkład:

rozkład	du ciągłego: dane1 w statistica01_3.st	w <u>?_X</u>	
alny	-	Podsum.	
Igość		Anuluj	
		▶ Opcje ▼	
rametry	Opcje	⊕ ⊻	
	8 Ustaw <u>d</u> omyślne	Grupami	
	19 Klinij aby przywrócić domyślną liczbę		
	23 kategorii, dolną i górną granicę i parametry		
	20,962157		
	.48158886		
ana:	20,962157		
owana:	,4815889		
	💛 Dopasowanie rozkładu cią	głego: dane1 w statistic	a01_3.stw ?_
	Rozkła <u>d</u> : Normalny	_	Podsum.

Rozkła <u>d</u> : Normalny	•	SUNN	Podsum
Je Zmienna długość			<u>A</u> nuluj
		A	<u>O</u> pcje
Podstawowe Parametry Opcje	1		ē
Test Kołmogorowa-Smirnowa <u>Nie</u> <u>T</u>ak (skategoryzowany) Tak (ciągły) Test chi-kwadrat ✓ Połączone kategorie Jeżeli oczekiwana częstość w przedziale jest mniejsza lub równa 5, to przedziały będą łączone	Wykres Wykres rozkładu Mykres rozkład liczności Dystrybuanta Wykres liczności lub % Liczności Częstości (%)		<u>G</u> rupami

Bazując na parametrach domyślnych można już na tym etapie przeprowadzić test zgodności (po naciśnięciu np. przycisku **Podsum**.). Parametry domyślne można zmienić na zakładkach: **Parametry** i **Opcje**. Na powyższym rysunku zmienione zostały: **Liczba kategorii, Dolna granica** i **Górna granica**. W przypadku testowania zgodności z rozkładem normalnym można również określić parametry rozkładu: Średnią i **Wariancję**. Dla ułatwienia parametry te są wstępnie ustawiane na podstawie wartości obliczonych z próby (Średnia obserwowana i Wariancja obserwowana). Na zakładce **Opcje** można również wymusić jednoczesne wykonanie testu Kołmogorowa–Smirnowa, można też zrezygnować z domyślnego łączenia kategorii jeśli liczebność w przedziałach klasowych jest mniejsza lub równa 5.

E	n statistica01_3.stw* - Zmienna: długość, Rozkład: Normalny (dane1 w statistica01_3.stw)									×	
>		Zmienna: długość, Rozkład: Normalny (dane1 w statistica01_3.stw) Chi-kwadrat = 1,32280, df = 3 (dopasow.), p = 0,72373									
	Obserw. Skum. Procent Skum.% Oczekiw. Skum. Procent Skumul.% Obserw										
	Górna	Liczność	Obserw.	Obserw.	Obserw.	Liczność	Oczekiw.	Oczekiw.	Oczekiw.	Oczekiw.	
	Granica										
	<= 19,5	1	1	1,00000	1,0000	1,75606	1,7561	1,75606	1,7561	-0,75606	
	20,0	6	7	6,00000	7,0000	6,52424	8,2803	6,52424	8,2803	-0,52424	
	20,5	18	25	18,00000	25,0000	16,99137	25,2717	16,99137	25,2717	1,00863	
	21,0	29	54	29,00000	54,0000	26,90274	52,1744	26,90274	52,1744	2,09726	
	21,5	26	80	26,00000	80,0000	25,90943	78,0838	25,90943	78,0838	0,09057	
	22,0	12	92	12,00000	92,0000	15,17728	93,2611	15,17728	93,2611	-3,17728	
	22,5	6	98	6,00000	98,0000	5,40438	98,6655	5,40438	98,6655	0,59562	
	<niesk.< td=""><td>2</td><td>100</td><td>2,00000</td><td>100,0000</td><td>1,33450</td><td>100,0000</td><td>1,33450</td><td>100,0000</td><td>0,66550</td><td></td></niesk.<>	2	100	2,00000	100,0000	1,33450	100,0000	1,33450	100,0000	0,66550	
	-									Þ	
I.	Zmien	na: długość,	Rozkład: No	malny (dane	1 w statistica	01_3.stw)					

Niezależnie od ustawienia opcji **Połączone kategorie** (na zakładce **Opcje**) wynikowa tabela testu zawiera wszystkie kategorie wynikające z ustawień parametrów z zakładki **Parametry** – łączenie wpływa na dopiero na wynikową wartość statystyki testowej, ilość stopni swobody rozkładu χ^2 oraz obliczaną wartość granicznego poziomu istotności, wyniki obliczeń wyświetlane są w tytule wynikowej tabeli testu w polach: **Chi-kwadrat**, **df** oraz **p**. Domyślny poziom istotność $\alpha = 0,05$ jest **mniejszy od** otrzymanego granicznego poziomu istotności *p*–*value* = 0,72373, więc w rozważanym przypadku nie ma podstaw do odrzucenia hipotezy o zgodności rozkładu z próby z rozkładem normalnym.

6.2. Test zgodności λ Kołmogorowa (Kołmogorowa – Smirnowa)

Test Kołmogorowa – Smirnowa można przeprowadzić z poziomu okna:

- Dopasowanie rozkładu (dostępne z menu: Statystyka/Dopasowanie rozkładu),
- Dopasowanie rozkładów (dostępne z menu: Statystyka/Rozkłady i symulacja/Dopasuj rozkład)
- Statystyki opisowe (dostępne z menu: Statystyka/Statystyki podstawowe),
- Analiza zdolności procesu (dostępne z menu: Statystyka/Analiza procesu).

6.2.1. Okno Dopasowanie rozkładu

Okno **Dopasowanie rozkładu** zostało omówione w punkcie poprzednim. Test Kołmogorowa–Smirnowa przeprowadzany jest w przypadku ustawienia na zakładce **Opcje** w grupie opcji **Test Kołmogorowa– Smirnowa** opcji: **Tak (skategoryzowany)** lub **Tak (ciągły)**.

Opcje **Tak (skategoryzowany)** lub **Tak (ciągły)** wpływają na sposób wyznaczania statystyki *D* liczonej jako maksymalna różnica pomiędzy dystrybuantami empiryczną i teoretyczną. Dla obliczeń skategoryzowanych obliczenia wykonywane są dla danych pogrupowanych, dla obliczeń ciągłych dane są sortowane a obliczenia są przeprowadzane dla każdej z wartości próbki. Okno wynikowe testu w każdym z przypadków zawiera te same obliczenia niezbędne dla przeprowadzenia testu χ^2 . Wyniki testu Kołmogorowa-Smirnowa wyświetlane są wyłącznie w nagłówku tabeli. Wyniki dla testu z obliczeniami

skategoryzowanymi i ciągłymi przedstawiono na kolejnych rysunkach. W pierwszym przypadku otrzymano wartość statystyki D = 0,01916 w drugim D = 0,03410. Graniczny poziom istotności p-value podany został tylko w drugim przypadku jako p = **n.i.** (w zasadzie zostały podane dwie wartości: p =**n.i.** i p Lillieforsa = **n.i.**, w przypadku testu normalności dokładniejszą wartością *p*-value jest wartość obliczana z testu Kołmogorowa–Smirnowa uwzględniająca poprawkę Lillieforsa, w rozważanym przykładzie obydwie wartości są **n.i.** czyli nieistotne, tzn. dużo większe od poziomu istotności α). Brak wyróżnienia (na czerwono) i nieistotna wartość granicznego poziomu istotności oznaczają, że nie ma podstaw do odrzucenia hipotezy o zgodności rozkładu z próby z rozkładem normalnym.

E	a statistic	a01_3.stw	* - Zmienna	a: długość, l	Rozkład: N	ormalny (da	ine1 w stati	stica01_3.st	.w)		×
>	Zmienn a: długość, Rozkład: Normalny (dane1 w statistica01_3.stw) d Kołmogorowa-Smirnowa 0,01916, Chi-kwadrat = 1,32280, df = 3 (dopasow.) , p = 0,72373										
E	statistic	a01_3.stw	- Zmienna:	długość, Ro	oz <mark>kład:</mark> No	rmalny (dan	e1 w statist	ica01_3.stw)		×
>	<	Zmienna: o d Kołmogo Chi-kwadra	l łu<u>gość, R</u>u rowa-Smir at = 1,3228	ozklad: No nowa 0,034 10, df = 3 (c	rmalny (da 110, p = n. lopasow.)	ne1 w stati i., p Lilliefo , p = 0,723	stica01_3.st rsa = n.i. 73	tw)			
	Górna	Obserw.	Skum.	Procent	Skum.%	Oczekiw.	Skum.	Procent	Skum.%	Obserw	
	Granica	Liczność	Obserw.	Obserw.	Obserw.	Liczność	Oczekiw.	Oczekiw.	Oczekiw.	Oczekiw.	
	<= 19,5	1	1	1,00000	1,0000	1,75606	1,7561	1,75606	1,7561	-0,75606	
	20,0	6	7	6,00000	7,0000	6,52424	8,2803	6,52424	8,2803	-0,52424	
	20,5	18	25	18,00000	25,0000	16,99137	25,2717	16,99137	25,2717	1,00863	
	21,0	29	54	29,00000	54,0000	26,90274	52,1744	26,90274	52,1744	2,09726	
	21,5	26	80	26,00000	80,0000	25,90943	78,0838	25,90943	78,0838	0,09057	
	22,0	12	92	12,00000	92,0000	15,17728	93,2611	15,17728	93,2611	-3,17728	
	22,5	6	98	6,00000	98,0000	5,40438	98,6655	5,40438	98,6655	0,59562	
	<niesk. 0,66550="" 1,33450="" 100="" 100,0000="" 2="" 2,00000="" <="" p=""></niesk.>										
J										Þ	//
	Zmien	na: długość,	Rozkład: No	omalny (dane	1 w statistica	a01_3.stw)					

6.2.2. Okno Dopasowanie rozkładów

Zgodność danych z podstawowymi rozkładami teoretycznymi (ciągłymi i dyskretnymi) może zostać zbadana po wskazaniu opcji: **Statystyka/Rozkłady i symulacja/Dopasuj rozkład**.

🕅 Rozkłady i symulacja: dane1 w sta	tistica01_?_X
Podstawowe	E OK
Dopasuj rozkład	Anuluj
Uruchom symulację	🔈 Opcje 🔻
Profilowanie	🗁 Otwórz dane
	SELECT S 🔂 W

Dopasowanie rozkładów można przeprowadzić po wskazaniu zmiennych na zakładce **Podstawowe**. Zakładka **Zmienne ciągłe** pozwala na ustalenie parametrów ciągłych rozkładów teoretycznych, zakładka **Zmienne skokowe** rozkładów dyskretnych.

🕡 Dopasowanie rozkłado	ów: dane1 w statistica01_3.stw	?_>	
Podstawowe Zmienne ci Zmienne: Ciągłe: długość Skokowa: brak	ągłe Zmienne skokowe Opcje	Anuluj Dpcje	
	Dopasowanie rozkładów: dane1 w statistic	a01_3.stw	?X
P	'odstawowe Zmienne ciągłe Zmienne skokow << Poprzednia Następna >> długość Rozkład Wyczyść Przełącz ✓ Normalny Przełącz ✓ Normalny Przełącz ✓ Normalny Przełącz ✓ Normalny Przełącz ✓ Nałożony normalny Przełącz ✓ Nałożony normalny Przełącz ✓ Nałożony normalny Przełącz ✓ Półnormalny ✓ Półnormalny ✓ Półnormalny ✓ Półnormalny ✓ Weibulla ✓ Mieszanka rozkładów Gaussa Liczba ✓ Johnsona (ogóny rozkład z jedną modą) ✓ Uogólniony Pareto ✓ Trójkątny	e Opcje	Anuluj Anuluj Copcje Compositive Compositive Anuluj Opcje Compositive Otwórz dane Streter St

Wyniki dopasowania rozkładu danych do wskazanych rozkładów teoretycznych są wyświetlane po zaakceptowaniu okna **Dopasowania rozkładów**. Okno wyników na zakładce **Podstawowe** pozwala na analizę dopasowania danych do wybranego rozkładu teoretycznego.

Użytkownik może zobaczyć:

wartości podstawowych statystyk wyznaczonych z próby (przycisk Podsumowanie),

碱 Wyniki dopasowania rozkładów: dane1 w statistica01_3.stw	? _ X
Podstawowe Zapisz dopasowanie	Symuluj
Zmienne << >> długość	Anuluj
Rozkład << ≥> Nomalny ▼	Dpcje 🔻
Podsumowanie Wykres podsumowujący Podsumowanie rozkładu	
Dystrybuanta empiryczna 🚮 Histogram z dopasowaniem 🚮 Skumulowany histogram	
Wykres P-P Wykres Q-Q Wykres ramka-wąsy	

 wyniki trzech testów zgodności (przycisk Podsumowanie rozkładu) Kołmogorowa – Smirnowa (wartość statystyki *D* oraz *p–value* – kolumny: d K–S i K–S p), Andersona–Darlinga (wartość statystyki AD oraz p–value – kolumny Stat. AD i p AD), χ² (wartość statystyki χ², p–value oraz ilość stopni swobody – kolumny: Chi^2, Chi^2 p, Chi^2 df) oraz dopasowane parametry rozkładu teoretycznego (na poniższym rysunku Param1 i Param2),

a stat	istica0	1_3.stw - F	odsumowa	anie for Zm	iienna: dług	<mark>jość (dane</mark> l	l w statistic	a01_3.stw))			×
		Podsumo	wanie for Z	(mienna: d	ługość (da	ne1 w stati	stica01_3.s	stw)				
		d K-S	K-S	Stat. AD	p AD	Chi ²	Chi^2	Chi ²	P	Param1	Param2	
			р				р	df	r			
									z			
Norm (loca skala	nalny ation, a)	0,034096	0,999588	0,131388	0,999263	1,322798	0,723727	3,000000		20,96216	0,693966	
		L						•			Þ	_
S 1	Statystyk	i opisowe (da	ane1 w statis	tica01_3.stw	/) Pode	sumowanie fo	r Zmienna: dłu	ugość (dane i	1 w s	tatistica01_	3.stw)	

Okno udostępnia również przyciski umożliwiające szybkie przygotowanie wykresów porównujących:

- dystrybuantę empiryczną i teoretyczną (przycisk Dystrybuanta empiryczna),
- histogram liczebności z nałożoną funkcją gęstości rozkładu teoretycznego (przycisk Histogram z dopasowaniem),
- histogram liczebności skumulowanych z nałożoną dystrybuantą rozkładu teoretycznego (przycisk Skumulowany histogram),
- wykres prawdopodobieństwo-prawdopodobieństwo (przycisk Wykres P-P),
- wykres kwantyl-kwantyl (przycisk **Wykres Q-Q**),
- wykres pudełkowy (przycisk Wykres ramka–wąsy),
- zestawienie wybranych wyników i wykresów (przycisk Wykres podsumowujący).

Zakładka **Zapisz dopasowanie** pozwala na analizę wyników dopasowania uzyskanych dla wszystkich rozważanych rozkładów teoretycznych.

Wyniki dopasowania ro	zkładów: d	ane1 w sta	tistica01_3	.stw					? _ ×
odstawowe Zapisz dopaso	wanie								<u>S</u> ymuluj
Zmienne << >> dłu	gość	•	Dostosuj	rozkłady					Anuluj
		Γ	Użyj dostos	owanych roz	kładów				Opcje 🔻
Rozkład	d K-S	K-S	Stat. AD	p AD	Chi-kwadrat	Chi 🔺		-	
Johnson SU(typ , Gamm	0,032319	0,999849	0,086619	0,999982	0,506198	0,4	₹		
Uogólniony wartości ekst	0,034274	0,999548	0,147229	0,998703	0,715509	0,6			
Log-normalny (skala,kszt	0,028586	0,999990	0,102308	0,999938	0,908069	0,8	†		
Normalny (location,skala)	0,034096	0,999588	0,131388	0,999263	1,322798	0,7			
Trójkątny(min,max,moda)	0,081717	0,491061	1,475839	0,182364	3,878467	0,1	$ \downarrow $		
Rayleigha (skala)	0,572317	0,000000	40,219927	0,000000	879,590183	0.0			
■ 1 /1 1 ×	0 (40070	0.000000	40.000000	0.000000	005 00044	لغروا	Ŧ		
Macierz korelacji	Podsu	imowanie roz	kładu 🛛	Zapisz	dopasowanie				

6.2.3. Okno Statystyki opisowe

Z poziomu okna Statystyki opisowe można przeprowadzić test zgodności z rozkładem normalnym.

🎉 Statystyki opisowe: dane1 w statistica01_3.stw	? _ ×
Zmienne: długość	Podsumowanie
Podstawowe Więcej Odporne Normalność W. prawd. i rozrzutu W. skategoryzowane Opcje	Anuluj
Rozkład Do dopasowywania innych rozktadów używamy modułu Dopasowanie rozktadów, Analiza procesu lub wykresów (P-P lub K-K), do dopasowania danych uciętych używamy Analizy przeżycia. © Liczba przedziałów: 10 © Przedziały całkowitoliczbowe Analiza procesu lub wykresów (P-P lub K-K), do dopasowania danych uciętych używamy Analizy przeżycia. Mormalne liczności oczekiwane Testy nomalności K-S i Lillieforsa Test W Shapiro-Wilka Test W Shapiro-Wilka	▶ Opcje ▼ ● ● Grupami SELECT s ● ● Momenty ważone □ DF = ● W-1 ●
Wykres 3W dla dwóch zmiennych Łodyga i liście Histogramy skategoryzowane Djagram łodyga i liście	Usuwanie <u>B</u> D © Przypadkami • Parami

Wyniki testu Kołmogorowa-Smirnowa wyświetlane są po naciśnięciu przycisku **Tabele liczności** jeśli zaznaczona została opcja **Testy K-S i Lillieforsa** (wcześniej należy wybrać zmienną i ewentualnie zmienić domyślną liczbę przedziałów kategoryzacji danych).

E	statistica01_3.s	tw - Tab	ela liczności: dłu	gość (dane1 w	statistica01_3	stw)		×
>		Tabela li K-S d=,	iczności: długoś 03410, p> .20; L	ść (dane1 w st ₋illiefors p> .2	atistica01_3.st 0	w)		
		Liczba	Skumulow.	Procent	Skumul. %	% ogółu	Skumulow. %	
	Klasa		Liczba	Ważnych	Ważnych	Przypadki	Ogółu	
	18,5 <x<=19,0< th=""><th>0</th><th>0</th><th>0,00000</th><th>0,0000</th><th>0,00000</th><th>0,0000</th><th></th></x<=19,0<>	0	0	0,00000	0,0000	0,00000	0,0000	
	19,0 <x<=19,5< th=""><th>1</th><th>1</th><th>1,00000</th><th>1,0000</th><th>1,00000</th><th>1,0000</th><th></th></x<=19,5<>	1	1	1,00000	1,0000	1,00000	1,0000	
	19,5 <x<=20,0< th=""><th>6</th><th>7</th><th>6,00000</th><th>7,0000</th><th>6,00000</th><th>7,0000</th><th></th></x<=20,0<>	6	7	6,00000	7,0000	6,00000	7,0000	
	20,0 <x<=20,5< th=""><th>18</th><th>25</th><th>18,00000</th><th>25,0000</th><th>18,00000</th><th>25,0000</th><th></th></x<=20,5<>	18	25	18,00000	25,0000	18,00000	25,0000	
	20,5 <x<=21,0< th=""><th>29</th><th>54</th><th>29,00000</th><th>54,0000</th><th>29,00000</th><th>54,0000</th><th></th></x<=21,0<>	29	54	29,00000	54,0000	29,00000	54,0000	
	21,0 <x<=21,5< th=""><th>26</th><th>80</th><th>26,00000</th><th>80,0000</th><th>26,00000</th><th>80,0000</th><th></th></x<=21,5<>	26	80	26,00000	80,0000	26,00000	80,0000	
	21,5 <x<=22,0< th=""><th>12</th><th>92</th><th>12,00000</th><th>92,0000</th><th>12,00000</th><th>92,0000</th><th></th></x<=22,0<>	12	92	12,00000	92,0000	12,00000	92,0000	
	22,0 <x<=22,5< th=""><th>6</th><th>98</th><th>6,00000</th><th>98,0000</th><th>6,00000</th><th>98,0000</th><th></th></x<=22,5<>	6	98	6,00000	98,0000	6,00000	98,0000	
	22,5 <x<=23,0< th=""><th>2</th><th>100</th><th>2,00000</th><th>100,0000</th><th>2,00000</th><th>100,0000</th><th></th></x<=23,0<>	2	100	2,00000	100,0000	2,00000	100,0000	
	Braki	0	100	0,00000		0,00000	100,0000	$\overline{}$
Ļ							Þ	
	Tabela licznoś	ci: długość	(dane1 w statistica	a01_3.stw)				

Podobnie jak poprzednio, wyniki wyświetlane są w nagłówku tabeli, tym razem wartość granicznego poziomu istotności określana jest jako: p > .20, więc nie ma podstaw do odrzucenia hipotezy o normalności rozkładu.

6.2.4. Okno Analiza zdolności procesu

Zgodność danych z podstawowymi rozkładami teoretycznymi może zostać zbadana po wskazaniu opcji

Procedury analizy procesu: dane1 w statistica01_3.stw	?×
Podstawowe	<u>OK</u>
Analiza zdolności procesu i granice tolerancji, dane surowe	Anuluj
Zdolność procesu wg ISO lub DIN (rozkład zależny od czasu)	🔊 Opcje 👻
Powtarzalność i odtwarzalność pomiarów	C Otwórz dane
Zdolność miemika Eliniowość miemika	
Badanie miemika dla oceny alternatywnej	
MSA, dane alternatywne	
Analiza zdolności - dwumianowy Analiza zdolności - Poissona	
📉 Analiza Weibulla niezawodności/czasu uszkodzeń ዂ Utwórz siatkę Weibulla	
Rany badań wyrywkowych, ocena liczbowa i alternatywna	
Diagram przyczynowo-skutkowy Ishikawy	

Analiza zdolności procesu i granice tolerancji, dane surowe. Na zakładce Rozkład można określić parametry rozkładów teoretycznych (w przypadku rozkładu normalnego, określane są na podstawie średniej i odchylenia standardowego z próby) i przeprowadzić test po naciśnięciu przycisku Dopasuj wszystkie rozkłady (oblicz parametry i d K-S).

Analiza zdolności procesu: dane surowe: dane1 w statistica01_3.stw										
D	ane surowe Grupow	vanie Rozkład			<u>о</u> к					
Г	Rozkład	1 IC	Anuluj							
	Dopasuj wsz		Opcie 🗸							
	C <u>B</u> eta:	Przesunięcie (położenie):	0	500						
		Parametr <u>s</u> kali:	1	CRS	<u>s</u> s <u>s</u> <u>w</u>					
	O Wykładniczy:	Przesunięcie (położenie):	0	by	Grupami					
	C Wartości <u>e</u> kstrem									
	O Gamma:	Przesunięcie (położenie):	0							
	C Log-nomalny:	Przesunięcie (położenie):	0							
	Normalny i ogólny inny (dopasowanie Pearsona i Johnsona)									
	O <u>R</u> ayleigha:	Przesunięcie (położenie):	0							
	◯ Weib <u>u</u> lla:	Przesunięcie (położenie):	0							

Wartość granicznego poziomu istotności dla rozkładu normalnego jest **n.i.**, więc mimo że wartość statystyki *D* dla rozkładu logarytmiczno normalnego ma mniejszą wartość (co oznacza że maksymalna

różnica pomiędzy dystrybuantami empiryczną i teoretyczną jest w tym przypadku najmniejsza) zgodnie z uwagą w nagłówku okna testu należy przyjąć że rozkład danych z próby jest rozkładem normalnym.

🔚 statistica01_3.stw - Oceny parametrów dla wszystkich rozkładów (dane1 w statistica01_3.stw)										
>	Oceny parametrów dla wszystkich rozkładów (dane1 w statistica01_3.stw) Zmienna: długość N = 100 (wartości p przy założeniu znajomości parametrów a priori) Rozkłady są uporządkowane wg dobroci dopasowania do danych (u góry są najlepiej dopasowane). Wszystkie rozkłady z poziomem p testu Kołmogorowa-Smirnowa oznaczonym jako (w kolejności od najlepszej do najgorszej) n.i, 0,1 <= p< 0,2 lub 0,5<=p<0,1 są dobrymi modelami danych. Uwaga: Jeśli rozkład normalny pasuje do danych, to należy go użyć.									
	Użytkow.	Użytkow.	Param. 1	Param. 2	d K-S	K-S				
Rozkład	Param. 1	Param. 2				р				
Log-normalny (próg, skala, kształt)	0,00		3,04218	0,0330	0,028586	n.i.				
Gamma(próg, skala, kształt)	0,00		0,02267	924,6606	0,030999	n.i.				
Inny niż normalny (skośność, kurtoza)			0,21238	0,2050	0,032319	n.i.				
Normalny (położenie, skala)			20,96216	0,6940	0,034096	n.i.l				
Wartości ekstrem.(położenie, skala)			20,62251	0,6559	0,071732	n.i.				
Weibulla (próg, skala, kształt)	0,00		21,30178	29,6473	0,089967	n.i.				
Rayleigha (próg, skala)	0,00		14,83052		0,572317	p<,01				
Wykładniczy (próg, skala)	0,00		20,96216		0,602323	p<,01				
Beta (próg, sigma, kształt, kształt)	0,00	1,000000					T			
Oceny parametrów dla wszystkich rozkładów (dane 1 w statistica										