6. STATYSTYKA MATEMATYCZNA – TESTY ZGODNOŚCI

Wynikiem działania testów statystycznych w STATISTICE są graniczne poziomy istotności p-value. Decyzję o **odrzuceniu** hipotezy H_0 można podjąć, gdy:

założony poziom istotności α jest większy od poziomu granicznego p-value.

O braku podstaw do odrzucenia hipotezy H₀ świadczy:

poziom istotności α mniejszy od granicznego poziomu istotności p-value.

W przypadku kilku testów nie ma możliwości określenia wartości poziomu α (domyślnie przyjmowany jest poziom istotności $\alpha = 0,05$).

Dla ułatwienia, wyniki testów, które dla ustalonego poziomu istotności α wymagają odrzucenia hipotezy H_0 , zaznaczane są na czerwono.

W testach zgodności weryfikowane są hipotezy dotyczące zgodności próby z pewnym rozkładem teoretycznym. W STATISTICE dostępne są najczęściej stosowane testy zgodności: test χ^2 i test Kołmogorowa–Smirnowa.

6.1. Test zgodności χ²

Test χ^2 można przeprowadzić z poziomu okna **Dopasowanie rozkładu** (dostępne z menu głównego: **Statystyka/ Dopasowanie rozkładu**).

W pierwszym kroku należy wybrać rozkład teoretyczny do którego dane z próby będą porównywane.

Następnie należy określić zmienną, która zawiera analizowane dane (w oknie na kolejnym rysunku do testu została wybrana zmienna długość.

1

🔀 Dopasowanie

🔛 Zmienna:

Rozkła<u>d</u>:

Dopasowanie rozkład	u ciągłego: dane1 w statis	stica01_3.stw	?X		
ozkła <u>d</u> : Normalny	_	SUHH	Podsum.		
🛃 Zmienna długość	$\overline{}$		Anuluj		
		A	<u>O</u> pcje ▼		
Podstawowe Parametry	Opcje		⊕ <u>w</u>		
Liczba k <u>a</u> tegorii:	8 Ustaw do	omyślne	<u>G</u> rupami		
Doļna granica:	19 Klinij aby prz domyślną lic	zywrócić zbę			
<u>G</u> óma granica:	23 kategorii, dol granicę i para	lna i górna ametry			
Średnia (<u>M</u>):	20,962157				
Wa <u>r</u> iancja:	.48158886				
Średnia obserwowana:	20,962157				
Wariancja obserwowana:	,4815889				
	——— 🔀 Dopasowanie r	ozkładu ciągłego: d	ane1 w statistica	01_3.stw	?_;
	Rozkład: Norma	alny 🔻		SUHH	Podsum
	·····				

Wykres

Wykres rozkładu <u>R</u>ozkład liczności

O Dystrybuanta

Liczności

C Częstości (%)

Wykres liczności lub %

Bazując na parametrach domyślnych można już na tym etapie przeprowadzić test zgodności (po
naciśnięciu np. przycisku Podsum .). Parametry domyślne można zmienić na zakładkach: Parametry i
Opcje. Na powyższym rysunku zmienione zostały: Liczba kategorii, Dolna granica i Górna granica.
W przypadku testowania zgodności z rozkładem normalnym można również określić parametry rozkładu:
Średnią i Wariancję. Dla ułatwienia parametry te są wstępnie ustawiane na podstawie wartości
obliczonych z próby (Średnia obserwowana i Wariancja obserwowana). Na zakładce Opcje można
również wymusić jednoczesne wykonanie testu Kołmogorowa-Smirnowa, można też zrezygnować z
domyślnego łączenia kategorii jeśli liczebność w przedziałach klasowych jest mniejsza lub równa 5.

Zmienna długość

• <u>N</u>ie

C Tak (ciągły)

Test chi-kwadrat

Podstawowe Parametry Opcje

Test Kołmogorowa-Smirnowa

C Tak (skategoryzowany)

Połączone kategorie

Jeżeli oczekiwana częstość w przedziale jest mniejsza lub równa 5, to przedziały będą łączone <u>A</u>nuluj

Opcje

<u>G</u>rupami

💩 🛯

≥

by II

E	statistic	a01_3.stw [‡]	* - Zmienna	: długość, F	Rozkład: No	rmalny (da	ne1 w statis	tica01_3.st	w)	_ _	×
>		Zmienna: Chi-kwadr	/mienna: długość, Rozkład: Normalny (dane1 w statistica01_3.stw) Chi-kwadrat = 1,32280, df = 3 (dopasow.) , p = 0,72373								
		Obserw. Skum. Procent Skum.% Oczekiw. Skum. Procent Skumul.% Obserw									
	Górna	Liczność	Obserw.	Obserw.	Obserw.	Liczność	Oczekiw.	Oczekiw.	Oczekiw.	Oczekiw.	
	Granica										
	<= 19,5	1	1	1,00000	1,0000	1,75606	1,7561	1,75606	1,7561	-0,75606	
	20,0	6	7	6,00000	7,0000	6,52424	8,2803	6,52424	8,2803	-0,52424	
	20,5	18	25	18,00000	25,0000	16,99137	25,2717	16,99137	25,2717	1,00863	
	21,0	29	54	29,00000	54,0000	26,90274	52,1744	26,90274	52,1744	2,09726	
	21,5	26	80	26,00000	80,0000	25,90943	78,0838	25,90943	78,0838	0,09057	
	22,0	12	92	12,00000	92,0000	15,17728	93,2611	15,17728	93,2611	-3,17728	
	22,5	6	98	6,00000	98,0000	5,40438	98,6655	5,40438	98,6655	0,59562	
	<niesk.< td=""><td>2</td><td>100</td><td>2,00000</td><td>100,0000</td><td>1,33450</td><td>100,0000</td><td>1,33450</td><td>100,0000</td><td>0,66550</td><td>Ţ</td></niesk.<>	2	100	2,00000	100,0000	1,33450	100,0000	1,33450	100,0000	0,66550	Ţ
	1									Þ	
Ι.	Zmien	na: długość,	Rozkład: No	malny (dane	1 w statistica	01_3.stw)					

Niezależnie od ustawienia opcji **Połączone kategorie** (na zakładce **Opcje**) wynikowa tabela testu zawiera wszystkie kategorie wynikające z ustawień parametrów z zakładki **Parametry** – łączenie wpływa na dopiero na wynikową wartość statystyki testowej, ilość stopni swobody rozkładu χ^2 oraz obliczaną wartość granicznego poziomu istotności, wyniki obliczeń wyświetlane są w tytule wynikowej tabeli testu w polach: **Chi-kwadrat**, **df** oraz **p**. Domyślny poziom istotność $\alpha = 0,05$ jest **mniejszy od** otrzymanego granicznego poziomu istotności *p*–*value* = 0,72373, więc w rozważanym przypadku nie ma podstaw do odrzucenia hipotezy o zgodności rozkładu z próby z rozkładem normalnym.

6.2. Test zgodności λ Kołmogorowa (Kołmogorowa – Smirnowa)

Test Kołmogorowa - Smirnowa można przeprowadzić z poziomu okna:

- Dopasowanie rozkładu (dostępne z menu: Statystyka/Dopasowanie rozkładu),
- Dopasowanie rozkładów (dostępne z menu: Statystyka/Rozkłady i symulacja/Dopasuj rozkład)
- Statystyki opisowe (dostępne z menu: Statystyka/Statystyki podstawowe),
- Analiza zdolności procesu (dostępne z menu: Statystyka/Analiza procesu).

6.2.1. Okno Dopasowanie rozkładu

Okno **Dopasowanie rozkładu** zostało omówione w punkcie poprzednim. Test Kołmogorowa–Smirnowa przeprowadzany jest w przypadku ustawienia na zakładce **Opcje** w grupie opcji **Test Kołmogorowa–Smirnowa** opcji: **Tak (skategoryzowany)** lub **Tak (ciągły)**.

Opcje **Tak (skategoryzowany)** lub **Tak (ciągły)** wpływają na sposób wyznaczania statystyki *D* liczonej jako maksymalna różnica pomiędzy dystrybuantami empiryczną i teoretyczną. Dla obliczeń skategoryzowanych obliczenia wykonywane są dla danych pogrupowanych, dla obliczeń ciągłych dane są sortowane a obliczenia są przeprowadzane dla każdej z wartości próbki. Okno wynikowe testu w każdym z przypadków zawiera te same obliczenia niezbędne dla przeprowadzenia testu χ^2 . Wyniki testu Kołmogorowa-Smirnowa wyświetlane są wyłącznie w nagłówku tabeli. Wyniki dla testu z obliczeniami

skategoryzowanymi i ciągłymi przedstawiono na kolejnych rysunkach. W pierwszym przypadku otrzymano wartość statystyki D = 0,01916 w drugim D = 0,03410. Graniczny poziom istotności p-value podany został tylko w drugim przypadku jako p = **n.i.** (w zasadzie zostały podane dwie wartości: p =**n.i.** i p Lillieforsa = **n.i.**, w przypadku testu normalności dokładniejszą wartością *p*-value jest wartość obliczana z testu Kołmogorowa–Smirnowa uwzględniająca poprawkę Lillieforsa, w rozważanym przykładzie obydwie wartości są **n.i.** czyli nieistotne, tzn. dużo większe od poziomu istotności α). Brak wyróżnienia (na czerwono) i nieistotna wartość granicznego poziomu istotności oznaczają, że nie ma podstaw do odrzucenia hipotezy o zgodności rozkładu z próby z rozkładem normalnym.

E	a statistic	a01_3.stw	* - Zmienna	a: długość, l	Rozkład: N	ormalny (da	ine1 w stati	stica01_3.st	.w)		×
>		Zmien na: dług ość, Rozkład: Normalny (dane1 w statistica01_3.stw) d Kołmogorowa-Smirnowa 0,01916, Chi-kwadrat = 1,32280, df = 3 (dopasow.), p = 0,72373									
E	🖥 statistica01_3.stw - Zmienna: długość, Rozkład: Normalny (dane1 w statistica01_3.stw)										
>	<	Zmienna: o d Kołmogo Chi-kwadra	l łu<u>gość, R</u>u rowa-Smir at = 1,3228	ozklad: No nowa 0,034 10, df = 3 (c	rmalny (da 110, p = n. lopasow.)	ne1 w stati i., p Lilliefo , p = 0,723	stica01_3.st rsa = n.i. 73	tw)			
	Górna	Obserw.	Skum.	Procent	Skum.%	Oczekiw.	Skum.	Procent	Skum.%	Obserw	
	Granica	Liczność	Obserw.	Obserw.	Obserw.	Liczność	Oczekiw.	Oczekiw.	Oczekiw.	Oczekiw.	
	<= 19,5	1	1	1,00000	1,0000	1,75606	1,7561	1,75606	1,7561	-0,75606	
	20,0	6	7	6,00000	7,0000	6,52424	8,2803	6,52424	8,2803	-0,52424	
	20,5	18	25	18,00000	25,0000	16,99137	25,2717	16,99137	25,2717	1,00863	
	21,0	29	54	29,00000	54,0000	26,90274	52,1744	26,90274	52,1744	2,09726	
	21,5	26	80	26,00000	80,0000	25,90943	78,0838	25,90943	78,0838	0,09057	
	22,0	12	92	12,00000	92,0000	15,17728	93,2611	15,17728	93,2611	-3,17728	
	22,5	6	98	6,00000	98,0000	5,40438	98,6655	5,40438	98,6655	0,59562	
	<niesk.< td=""><td>2</td><td>100</td><td>2,00000</td><td>100,0000</td><td>1,33450</td><td>100,0000</td><td>1,33450</td><td>100,0000</td><td>0,66550</td><td>-</td></niesk.<>	2	100	2,00000	100,0000	1,33450	100,0000	1,33450	100,0000	0,66550	-
J										Þ	//
	Zmien	na: długość,	Rozkład: No	omalny (dane	1 w statistica	a01_3.stw)					

6.2.2. Okno Dopasowanie rozkładów

Zgodność danych z podstawowymi rozkładami teoretycznymi (ciągłymi i dyskretnymi) może zostać zbadana po wskazaniu opcji: **Statystyka/Rozkłady i symulacja/Dopasuj rozkład**.

🕅 Rozkłady i symulacja: dane1 w sta	tistica01_?_X
Podstawowe	E OK
Dopasuj rozkład	Anuluj
Uruchom symulację	🔈 Opcje 🔻
Profilowanie	🗁 Otwórz dane
	SELECT S 🔂 W

Dopasowanie rozkładów można przeprowadzić po wskazaniu zmiennych na zakładce **Podstawowe**. Zakładka **Zmienne ciągłe** pozwala na ustalenie parametrów ciągłych rozkładów teoretycznych, zakładka **Zmienne skokowe** rozkładów dyskretnych.

<u>M</u> Dopasowanie rozkład	lów: dane1 w statistica01_3.stw	?_×	<u>c</u>
Podstawowe Zmienne o <u>Z</u> mienne: Ciągłe: długość Skokowe: brak	ziągłe Zmienne skokowe Opcje ć Dopasowanie rozkładów: dane1 w statistica	Anuluj Dopoje	2 1
	Podstawowe Zmienne ciągłe Zmienne skokowe << Poprzednia Następna >> długość Rozkład Wszystkie Wyczyść Przełącz ✓ Normalny Przełącz Image: State Stat	Opcje ▼ Przesunięcie: 0 Przesunięcie: 0	Anuluj Anuluj Anuluj Copcje Consessional Consessiona

Wyniki dopasowania rozkładu danych do wskazanych rozkładów teoretycznych są wyświetlane po zaakceptowaniu okna **Dopasowania rozkładów**. Okno wyników na zakładce **Podstawowe** pozwala na analizę dopasowania danych do wybranego rozkładu teoretycznego.

Użytkownik może zobaczyć:

• wartości podstawowych statystyk wyznaczonych z próby (przycisk Podsumowanie),

🔞 Wyniki dopasowania rozkład	lów: dane1 w statistica01_3.stw		?_X
Podstawowe Zapisz dopasowanie			Symuluj
Zmienne << >> długość	•		Anuluj
Rozkład << >> Normalny			Dpcje 🔻
Podsumowanie	Wykres podsumowujący	Podsumowanie rozkładu]
Dystrybuanta empiryczna	Histogram z dopasowaniem	Skumulowany histogram]
Wykres P-P	Wykres <u>Q</u> -Q	wykres ramka-wąsy]

wyniki trzech testów zgodności (przycisk Podsumowanie rozkładu)
 Kołmogorowa – Smirnowa (wartość statystyki *D* oraz *p*-*value* – kolumny: d K–S i K–S p),
 Andersona–Darlinga (wartość statystyki AD oraz p–value – kolumny Stat. AD i p AD),
 χ² (wartość statystyki χ², p–value oraz ilość stopni swobody – kolumny: Chi^2, Chi^2 p, Chi^2 df)
 oraz dopasowane parametry rozkładu teoretycznego (na poniższym rysunku Param1 i Param2),

티	statistica0	1_3.stw - F	odsumowa	anie for Zm	iienna: dług	jość (dane:	1 w statistic	a01_3.stw))		_ 🗆	×
>		Podsumo	wanie for Z	(mienna: d	ługość (da	ne1 w stati	istica01_3.s	stw)				
		d K-S	K-S	Stat. AD	p AD	Chi ²	Chi^2	Chi ²	Ρ	Param1	Param2	
			р				р	df	r			
									Z			
	Normalny (location, skala)	0,034096	0,999588	0,131388	0,999263	1,322798	0,723727	3,000000		20,96216	0,693966	-
J	•										Þ	_ //
	Statystyk	i opisowe (da	ane1 w statis	tica01_3.stw	/) 🔲 Pode	sumowanie fo	r Zmienna: dłu	ugość (dane i	l w	statistica01_	.3.stw)	

Okno udostępnia również przyciski umożliwiające szybkie przygotowanie wykresów porównujących:

- dystrybuantę empiryczną i teoretyczną (przycisk Dystrybuanta empiryczna),
- histogram liczebności z nałożoną funkcją gęstości rozkładu teoretycznego (przycisk Histogram z dopasowaniem),
- histogram liczebności skumulowanych z nałożoną dystrybuantą rozkładu teoretycznego (przycisk Skumulowany histogram),
- wykres prawdopodobieństwo-prawdopodobieństwo (przycisk Wykres P-P),
- wykres kwantyl-kwantyl (przycisk **Wykres Q-Q**),
- wykres pudełkowy (przycisk Wykres ramka–wąsy),
- zestawienie wybranych wyników i wykresów (przycisk Wykres podsumowujący).

Zakładka **Zapisz dopasowanie** pozwala na analizę wyników dopasowania uzyskanych dla wszystkich rozważanych rozkładów teoretycznych.

碱 Wyniki dopasowania ro:	zkładów: d	ane1 w sta	tistica01_3	.stw					?_×
Podstawowe Zapisz dopaso	wanie								<u>S</u> ymuluj
Zmienne << _> dłu	gość	•	Dostosuj	rozkłady					Anuluj
		Γ	Użyj dostos	owanych rozł	kładów				Opcje 👻
Rozkład	d K-S	K-S	Stat. AD	p AD	Chi-kwadrat	Chi 🔺		-	
Johnson SU(typ , Gamm	0,032319	0,999849	0,086619	0,999982	0,506198	0,4	₹		
Uogólniony wartości ekst	0,034274	0,999548	0,147229	0,998703	0,715509	0,6			
Log-normalny (skala,kszt	0,028586	0,999990	0,102308	0,999938	0,908069	0,8	↑		
Normalny (location,skala)	0,034096	0,999588	0,131388	0,999263	1,322798	0.7			
Trójkątny(min,max,moda)	0,081717	0,491061	1,475839	0,182364	3,878467	0,1	$ \downarrow $		
Rayleigha (skala)	0,572317	0,000000	40,219927	0,000000	879,590183	0,0			
	0 (40070	0.000000	40.000000	0.000000	005.00044		Ŧ		
Macierz korelacji	Podsu	mowanie roz	kładu 🛛	Zapisz (dopasowanie				

6.2.3. Okno Statystyki opisowe

Z poziomu okna Statystyki opisowe można przeprowadzić test zgodności z rozkładem normalnym.

🔀 Statystyki opisowe: dane1 w statistica01_3.stw	?×
Image:	Podsumowanie Anuluj Opcje Grupami Stiller (RSSS S) Momenty ważone DF = W-1 W-1
Wykres 3W dla dwóch zmiennych Lodyga i liście Histogramy skategoryzowane Diagram łodyga i liście	Usuwanie <u>B</u> D O Przypadkami O Parami

Wyniki testu Kołmogorowa-Smirnowa wyświetlane są po naciśnięciu przycisku **Tabele liczności** jeśli zaznaczona została opcja **Testy K-S i Lillieforsa** (wcześniej należy wybrać zmienną i ewentualnie zmienić domyślną liczbę przedziałów kategoryzacji danych).

E	statistica01_3.s	stw - Tab	ela liczności: dłu	gość (dane1 w	statistica01_3.	stw)		×
>		Tabela I K-S d=,	iczności: długoś 03410, p> .20; L	ść (dane1 w st ⊾illiefors p> .2	atistica01_3.st 0	w)		
		Liczba	Skumulow.	Procent	Skumul. %	% ogółu	Skumulow. %	
	Klasa		Liczba	Ważnych	Ważnych	Przypadki	Ogółu	
	18,5 <x<=19,0< th=""><th>0</th><th>0</th><th>0,00000</th><th>0,0000</th><th>0,00000</th><th>0,0000</th><th></th></x<=19,0<>	0	0	0,00000	0,0000	0,00000	0,0000	
	19,0 <x<=19,5< th=""><th>1</th><th>1</th><th>1,00000</th><th>1,0000</th><th>1,00000</th><th>1,0000</th><th></th></x<=19,5<>	1	1	1,00000	1,0000	1,00000	1,0000	
	19,5 <x<=20,0< th=""><th>6</th><th>7</th><th>6,00000</th><th>7,0000</th><th>6,00000</th><th>7,0000</th><th></th></x<=20,0<>	6	7	6,00000	7,0000	6,00000	7,0000	
	20,0 <x<=20,5< th=""><th>18</th><th>25</th><th>18,00000</th><th>25,0000</th><th>18,00000</th><th>25,0000</th><th></th></x<=20,5<>	18	25	18,00000	25,0000	18,00000	25,0000	
	20,5 <x<=21,0< th=""><th>29</th><th>54</th><th>29,00000</th><th>54,0000</th><th>29,00000</th><th>54,0000</th><th></th></x<=21,0<>	29	54	29,00000	54,0000	29,00000	54,0000	
	21,0 <x<=21,5< th=""><th>26</th><th>80</th><th>26,00000</th><th>80,0000</th><th>26,00000</th><th>80,0000</th><th></th></x<=21,5<>	26	80	26,00000	80,0000	26,00000	80,0000	
	21,5 <x<=22,0< th=""><th>12</th><th>92</th><th>12,00000</th><th>92,0000</th><th>12,00000</th><th>92,0000</th><th></th></x<=22,0<>	12	92	12,00000	92,0000	12,00000	92,0000	
	22,0 <x<=22,5< th=""><th>6</th><th>98</th><th>6,00000</th><th>98,0000</th><th>6,00000</th><th>98,0000</th><th></th></x<=22,5<>	6	98	6,00000	98,0000	6,00000	98,0000	
	22,5 <x<=23,0< th=""><th>2</th><th>100</th><th>2,00000</th><th>100,0000</th><th>2,00000</th><th>100,0000</th><th></th></x<=23,0<>	2	100	2,00000	100,0000	2,00000	100,0000	
	Braki	0	100	0,00000		0,00000	100,0000	
J							Þ	
	Tabela licznoś	ci: długość	(dane1 w statistica	01_3.stw)				

Podobnie jak poprzednio, wyniki wyświetlane są w nagłówku tabeli, tym razem wartość granicznego poziomu istotności określana jest jako: p > .20, więc nie ma podstaw do odrzucenia hipotezy o normalności rozkładu.

6.2.4. Okno Analiza zdolności procesu

Zgodność danych z podstawowymi rozkładami teoretycznymi może zostać zbadana po wskazaniu opcji

Procedury analizy procesu: dane1 w statistica01_3.stw	?_>
Podstawowe	<u>OK</u>
Analiza zdolności procesu i granice tolerancji, dane surowe Analiza zdolności procesu, granice tolerancji, dane zagregowane Zdolność procesu wg ISO lub DIN (rozkład zależny od czasu)	Anuluj
Zdolność dla pozycjonowania X-Y Zdolność i odtwarzalność pomiarów Zdolność miemika Liniowość miemika Badanie miemika dla oceny altematywnej	CRSES S
Zgodność dla pomiarów alternatywnych MSA, dane alternatywne Analiza zdolności - dwumianowy Analiza zdolności - Poissona	
Analiza Weibulla niezawodności/czasu uszkodzeń Utwórz siatkę Weibulla Plany badań wyrywkowych, ocena liczbowa i alternatywna Diagram przyczynowo-skutkowy Ishikawy	

Analiza zdolności procesu i granice tolerancji, dane surowe. Na zakładce Rozkład można określić parametry rozkładów teoretycznych (w przypadku rozkładu normalnego, określane są na podstawie średniej i odchylenia standardowego z próby) i przeprowadzić test po naciśnięciu przycisku Dopasuj wszystkie rozkłady (oblicz parametry i d K-S).

×.	Analiza zdolności p	procesu: dane surowe: d	ane1 w statis	tica01_3.stw	? _ X
D	ane surowe Grupow	vanie Rozkład			<u>о</u> к
Г	Rozkład			1 IC	Anuluj
	Dopasuj wsz	ystkie rozkłady (oblicz paran	netry i d K-S)		Opcie 🗸
	C <u>B</u> eta:	Przesunięcie (położenie):	0	500	
		Parametr <u>s</u> kali:	1	CRS	<u>s</u> s <u>s</u> <u>w</u>
	O Wykładniczy:	Przesunięcie (położenie):	0	by	Grupami
	C Wartości <u>e</u> kstrem	alnych (typ I, Gumbela)			
	O Gamma:	Przesunięcie (położenie):	0		
	C Log-nomalny:	Przesunięcie (położenie):	0		
	Normalny i ogólny	y inny (dopasowanie Pearsor	na i Johnsona)		
	O <u>R</u> ayleigha:	Przesunięcie (położenie):	0		
	O Weib <u>u</u> lla:	Przesunięcie (położenie):	0		

Wartość granicznego poziomu istotności dla rozkładu normalnego jest n.i., więc mimo że wartość statystyki D dla rozkładu logarytmiczno normalnego ma mniejszą wartość (co oznacza że maksymalna

różnica pomiędzy dystrybuantami empiryczną i teoretyczną jest w tym przypadku najmniejsza) zgodnie z uwagą w nagłówku okna testu należy przyjąć że rozkład danych z próby jest rozkładem normalnym.

🖥 statistica01_3.stw - Oceny parametróv	v dla wszyst	kich rozkła	dów (dane1	l w statistic	a01_3.stw)		
>	Oceny para (dane1 w s (wartości p Rozkłady s (u góry są i Wszystkie oznaczony 0,1 <= p< i Uwaga: Jeś	ametrów dla tatistica01 przy założ ą uporządl najlepiej do rozkłady z m jako (w 0,2 lub 0,5 śli rozkład	a wszystkia _3.stw) Zmi zeniu znajor kowane wg pasowane) poziomem kolejności o <=p<0,1 są normalny p	ch rozkładó ienna: dług mości para dobroci do i p testu Ko od najlepsz dobrymi m asuje do da	w ość N = 10 metrów a p pasowania ołmogorowa ej do najgo nodelami da anych, to na	0 riori) do danyo I-Smirnov rszej) n. Inych. ależy go	ch wa i, użyć.
	Użytkow.	Użytkow.	Param. 1	Param. 2	d K-S	K-S	
Rozkład	Param. 1	Param. 2				р	
Log-normalny (próg, skala, kształt)	0,00		3,04218	0,0330	0,028586	n.i.	
Gamma(próg, skala, kształt)	0,00		0,02267	924,6606	0,030999	n.i.	
Inny niż normalny (skośność, kurtoza)			0,21238	0,2050	0,032319	n.i.	
Normalny (położenie, skala)			20,96216	0,6940	0,034096	n.i.	
Wartości ekstrem.(położenie, skala)			20,62251	0,6559	0,071732	n.i.	
Weibulla (próg, skala, kształt)	0,00		21,30178	29,6473	0,089967	n.i.	
Rayleigha (próg, skala)	0,00		14,83052		0,572317	p<,01	
Wykładniczy (próg, skala)	0,00		20,96216		0,602323	p<,01	
Beta (próg, sigma, kształt, kształt)	0,00	1,000000					
1							
Oceny parametrów dla wszystkich rozkład	ów (dane1 w s	tatistica					

6.2. Transformacja rozkładu do rozkładu normalnego – przekształcenie Boxa – Coxa

Większość analiz statystycznych dotyczy zmiennych o rozkładzie normalnym. W praktyce rozkład zmiennych często odbiega od rozkładu normalnego – w takim przypadku przed wykonaniem odpowiedniej analizy konieczne jest takie przekształcenie zmiennych aby po wykonaniu przekształcenia ich rozkład był bliski normalnemu. O transformacji, którą można zastosować decyduje rozkład zmiennej, w wielu przypadkach do normalizacji zmiennej można zastosować przekształcenie Boxa-Coxa. Przekształcenie to to właściwie cała rodzina przekształceń obejmującą (w zależności od wartości parametru λ tego przekształcenia), przekształcenia potęgowe oraz logarytmiczne. W STATISTICE przekształcenie Boxa-Coxa można wykonać z poziomu okna **Przekształcenie Boxa-Coxa**, dostępnego z menu **Dane** (opcja **Dane** jest widoczna jeżeli bieżącym elementem skoroszytu jest arkusz).

Przykład

Wykorzystując zapisane w arkuszu *dane3* wyniki 100 pomiarów trwałości narzędzia stosowanego w pewnym procesie technologicznym w trakcie 6 umownych jednostek czasu.

Przeprowadzona analiza (histogram, wykres normalności i testy zgodności) wykazała, że rozkład trwałości nie jest rozkładem normalnym.

Zmienna: trwałość, Rozkład: Normalny (dane3 w dodatek03.stw)	
Do normalizacji rozkładu zmiennej wykorzystane zostało przekształcenie Boxa – Coxa. Poszu	ukiwanie
optymalnej wartości parametru λ jest realizowane w programie przy pomocy metody złotego podz	ziału.

40

71

87

95

99

100

40.00000

31,00000

16.00000

8,00000

4,00000

1,00000

40

31

16

8

4

1

W oknie **Przekształcenie Boxa-Coxa** można zmienić domyślne parametry tej metody:

 maksymalną liczbę iteracji (domyślnie: 40),

<= 1,00000

2.00000

3.00000

4,00000

5,00000

4

<nieskończoność

- przedział w którym poszukiwany jest parametr λ
 (domyślnie: od -5 do 5),
- parametr zbieżności (domyślnie 0,00001).

Przekształcenie Boxa-Coxa:	dane3 w statistic	a06.stw ?_X
Parametry		
Zmienne	:	OK
Przekształcenie Boxa-Coxa		Anuluj
Maksymalna liczba iteracji:	40 💂	🔉 Opcje 🔻
Minimalna wartość lambda:	-5	selekcja
Maksymalna wart. lambda:	5	🔁 Otwórz dane
Epsilon (param. zbieżności):	.00001 🚔	
Przesunięcie zmiennej o najmniejszej wart.<=0:	1 =	

40.0000

71.0000

87,0000

95,0000

99,0000

100,0000

31.2645

31.8174

24.5425

9,9836

2,1373

0,2545

Sposób działanie metody polega na iteracyjnym zawężaniu pierwotnego przedziału poszukiwań. Metoda kończy swoje działanie po zawężeniu przedziału do długości równej parametrowi zbieżności lub po osiągnięciu maksymalnej liczby iteracji.

Po zaakceptowaniu okna parametrów przyciskiem OK, w kolejnym oknie

🕅 Wynik - przekształcenie Boxa-Coxa: dane3 w	dodatek <mark>? _ </mark> ×
Wynik - przekształcenie Boxa-Coxa	I []
Podsumowanie	Podsum.
Histogramy i wykresy normalności	Anuluj
Wykres historii poszukiwania lambdy	▶ Opcje ▼
lle zmiennych 1 Dodaj zmienne	Grupami
Zapisz do arkusza wejściowego	

można:

- wygenerować arkusz podsumowania zawierający między innymi znalezioną wartość parametru λ (przycisk Podsumowanie),
- oglądnąć przebieg poszukiwań (przycisk Wykres historii poszukiwania lambdy),
- przeanalizować jakość znalezionego rozwiązania porównując histogramy i wykresy normalności zmiennej pierwotnej i zmiennej przekształconej (przycisk Histogramy i wykresy normalności),
- zapisać przekształconą zmienną w arkuszu tak aby można ją było wykorzystać do dalszych analiz (przycisk Zapisz do arkusza wejściowego).

Z arkusza zawierającego podsumowanie wynika, że optymalna wartość parametru λ (dla której *funkcja największej wiarygodności* osiąga wartość maksymalną) wynosi $\lambda = 0,368919$. Dodatkowo, w arkuszu podsumowania umieszczone jest wyrażenie pozwalające na przekształcenie zmiennej (po skopiowaniu do arkusza zawierającego przekształcaną zmienną).

E	ab04_1_rozw.stw	- Statysty	'ki (pom	iary2 w la	ab04_1_ro	zw.stw)			×
>		Statystyk	i (pomia	ry2 w lat	04_1_roz	w.stw)			
		Lambda	Przes.	Śred.	Odch. stand.	Dolna granica	Górna granica	Formuła przekształcenia Boxa-Coxa	
	Przekształcona(e)					przedz.	przedz. ufn.		
	zmienna(e)					ufn.			
	pomiar	0,396475	0,00	,282148	1,181058	0,171002	0,63418	(v1^(0,396475))-1)/(0,396475)	\mathbf{E}
								Þ	
ſ	Przekształcenie E	Boxa-Coxa (p	omiary2 w	/ lab04_1_	rozw.stw)	Statystyki ((pomiary2 w lab0	4_1_rozw.stw)	

Analiza histogramu i wykresu normalności wskazuje, że po zastosowaniu znalezionego przekształcenia rozkład przekształconej zmiennej można uznać za normalny.

Zmodyfikowane wartości danych można zapisać w tym samym arkuszu, w którym zapisane są dane pierwotne – w ten sposób możliwe będzie wykonywanie dalszych analiz, w których konieczne jest spełnienie założenia o normalności rozkładu. Dane mogą zostać zapisane, o ile w arkuszu wejściowym znajduje się dodatkowa kolumna (tzn. dodatkowa zmienna).

Zmienną tą można w arkuszu utworzyć przed wykonaniem przekształcenia, możliwe jest także uzupełnienie arkusza z poziomu okna wyników przekształcenia. Nową zmienną do arkusza wejściowego można dodać po wybraniu przycisku **Dodaj zmienne** – zmienna otrzyma nazwę wygenerowaną automatycznie przez program. Po uzupełnieniu arkusza można zapisać przekształcone dane w arkuszu. Po naciśnięciu przycisku **Zapisz do arkusza wejściowego** należy wskazać w jakiej zmiennej arkusza zostaną zapisane zmodyfikowane dane. W tym celu, w części **Zmienne** należy wskazać zmienną, która przyjmie wartości wyznaczone na podstawie przekształceniu (tutaj jest to wygenerowana automatycznie zmienna **ZmPrz2**) i nacisnąć przycisk **Przypisz**. Przekształcone dane zostaną zapisane w arkuszu po zamknięciu okna przyciskiem **OK**.

Analiza wykonana przy pomocy opcji **Statystyka/Rozkłady i symulacja/Dopasuj rozkład** wskazuje, że nie można odrzucić hipotezy o normalności rozkładu zmiennej **ZmPrz2**.

Zmienne << >>	ZmPrz2		.)ostosuj rozkł	ady			Anuluj
			Uży	/j dostosowar	nych rozkładó	w	2	Opcie
Rozkład	d K-S	K-S P	Stat. AD	p AD	Chi-kwadrat	Dhi kwadrat 🔺		-1-1-
Mieszanka Gaus	0,055932	0,895680	0,319106	0,923189	11,980000	0,017501 4		
Normalny (locatio	0,061166	0,826131	0,426092	0,822327	11,760000	0,162238		
Johnson SB(typ	0,065748	0,755145	0,446254	0,801620	N/A	N/A I		
Uogólniony warto	0,071046	0,667029	0,488044	0,758735	14,400000	0,044507		
Trójkątny(min,ma	0,093343	0,327729	1,979221	0,094402	16,160000	0,023694		
Log-normalny (sk	N/A	N/A	N/A	N/A	N/A	N/A I		
Nałożony normal	N/A	N/A	N/A	N/A	N/A	N/A I		
•	N1 / A	N174	N1 /A	N1 / A	N1 / A	N //		